Fabrication of Flexible Poly(m-aminophenol)/Vanadium Pentoxide/Graphene Ternary Nanocomposite Film as a Positive Electrode for Solid-State Asymmetric Supercapacitors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of V2O5/Amino-FG Nanocomposites
2.3. Preparation of V2O5/Amino-FG/Poly(m-aminophenol) Nanocomposite Film
2.4. Characterizations
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vimuna, V.M.; Athira, A.R.; Dinesh Babu, K.V.; Xavier, T.S. Simultaneous stirring and microwave assisted synthesis of nanoflakes MnO2/rGO composite electrode material for symmetric supercapacitor with enhanced electrochemical performance. Diam. Relat. Mater. 2020, 110, 108129. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Anand, S.; Dey, B.; Fatima, A.; Yang, D.J.; Choudhury, A. N/P/O/S Heteroatom-Doped Porous Carbon Nanofiber Mats Derived from a Polyacrylonitrile/l-Cysteine/P2O5 Precursor for Flexible Electrochemical Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 12177–12190. [Google Scholar] [CrossRef]
- Zan, G.; Wu, T.; Zhu, F.; He, P.; Cheng, Y.; Chai, S.; Wang, Y.; Huang, X.; Zhang, W.; Wan, Y.; et al. A biomimetic conductive super-foldable material. Matter 2021, 4, 3232–3247. [Google Scholar] [CrossRef]
- Zan, G.; Wu, T.; Dong, W.; Zhou, J.; Tu, T.; Xu, R.; Chen, Y.; Wang, Y.; Wu, Q. Two-level biomimetic designs enable intelligent stress dispersion for super-foldable C/NiS nanofiber free-standing electrode. Adv. Fiber Mater. 2022, 4, 1177–1190. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Choudhury, A.; Dey, B.; Anand, S.; Saidi, A.K.A.A.; Lee, G.H.; Yang, D.J. Three-dimensional core-shell niobium-metal organic framework@ carbon nanofiber mat as a binder-free positive electrode for asymmetric supercapacitor. J. Energy Storage 2022, 55, 105484. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Anand, S.; Dey, B.; Yang, D.J.; Choudhury, A. Asymmetric supercapacitors based on porous MnMoS4 nanosheets-anchored carbon nanofiber and N, S-doped carbon nanofiber electrodes. J. Alloys Compd. 2022, 906, 164271. [Google Scholar] [CrossRef]
- Wang, H.; Yi, H.; Chen, X.; Wang, X. Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J. Mater. Chem. A 2014, 2, 3223. [Google Scholar] [CrossRef]
- Paul, A.; Ghosh, S.; Kolya, H.; Kang, C.-W.; Murmu, N.C.; Kuila, T. High performance asymmetric supercapacitor device based on lanthanum doped nickel-tin oxide/reduced graphene oxide composite. J. Energy Storage 2022, 55, 105526. [Google Scholar] [CrossRef]
- Wei, L.; Deng, W.; Li, S.; Wu, Z.; Cai, J.; Luo, J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Biores. Bioprod. 2022, 7, 63–72. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Biores. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Bokhari, S.W.; Siddique, A.H.; Sherrell, P.C.; Yue, X.; Karumbaiah, K.M.; Wei, S.; Ellis, A.V.; Gao, W. Advances in graphene-based supercapacitor electrodes. Energy Rep. 2020, 6, 2768–2784. [Google Scholar] [CrossRef]
- Horn, M.; Gupta, B.; MacLeod, J.; Liu, J.; Motta, N. Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials. Cur. Opin. Green Sustain. Chem. 2019, 17, 42–48. [Google Scholar] [CrossRef]
- Yin, S.; Niu, Z.; Chen, X. Assembly of graphene sheets into 3D macroscopic structures. Small 2012, 8, 2458–2463. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes–A review. J. Materiomics. 2016, 2, 37–54. [Google Scholar] [CrossRef]
- Velasco, A.; Ryu, Y.K.; Boscá, A.; Ladrón-de-Guevara, A.; Hunt, E.; Zuo, J.; Pedrós, J.; Calle, F.; Martinez, J. Recent trends in graphene supercapacitors: From large area to microsupercapacitors. Sust. Energy Fuels 2021, 5, 1235–1254. [Google Scholar] [CrossRef]
- Ding, X.; Liu, R.; Zhao, J.; Hu, J.; Wu, J.; Zhang, C.; Lin, J. In situ formation of Co3O4 nanocrystals embedded in laser-induced graphene foam for high-energy flexible micro-supercapacitors. Dalton Trans. 2022, 51, 2846–2854. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide-based hybrid nanostructures for advanced supercapacitors. J. Alloys Compd. 2019, 775, 1324–1356. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, M.; Yang, H.; Liu, Q.; Li, W.; Yu, C.-M. Porous graphene oxide nanosheets warped by Ni(OH)2 platelets as an efficient binder-free electrode material for supercapacitors. Synt. Met. 2020, 267, 116452. [Google Scholar] [CrossRef]
- Lo, H.-J.; Huang, M.-C.; Lai, Y.-H.; Chen, H.-Y. Towards bi-functional all-solid-state supercapacitor based on nickel hydroxide-reduced graphene oxide composite electrodes. Mater. Chem. Phys. 2021, 262, 124306. [Google Scholar] [CrossRef]
- Balu, R.; Dakshanamoorthy, A. One pot preparation of tin sulfide decorated graphene nanocomposite for high performance supercapacitor applications. Inorg. Chem. Commun. 2022, 136, 109148. [Google Scholar] [CrossRef]
- Marand, N.A.; Masoudpanah, S.M.; Alamolhoda, S.; Bafghi, M.S. Solution combustion synthesis of nickel sulfide/reduced graphene oxide composite powders as electrode materials for high-performance supercapacitors. J. Energy Storage 2021, 39, 102637. [Google Scholar] [CrossRef]
- Barua, A.; Mehra, P.; Paul, A. Understanding Integrated Graphene–MOF Nanostructures as Binder-and Additive-Free High-Performance Supercapacitors at Commercial Scale Mass Loading. ACS Appl. Energy Mater. 2021, 4, 14249–14259. [Google Scholar] [CrossRef]
- Ngo, T.V.; Moussa, M.; Tung, T.T.; Coghlan, C.; Losic, D. Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochim. Acta 2020, 329, 135104. [Google Scholar]
- Choudhury, A.; Dey, B.; Mahapatra, S.S.; Kim, D.-W.; Yang, K.-S.; Yang, D.-J. Flexible and freestanding supercapacitor based on nanostructured poly(m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities. Nanotechnology 2018, 29, 165401. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Gou, X.; Qi, T.; Yang, J.; Ding, Y. Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater. Sci. Eng. B 2013, 178, 293–298. [Google Scholar] [CrossRef]
- Zhang, R.; Pang, H. Application of graphene-metal/conductive polymer-based composites in supercapacitors. J. Energy Storage 2021, 33, 102037. [Google Scholar] [CrossRef]
- Leistenschneider, D.; Abedi, Z.; Ivey, D.G.; Chen, W. Coating of Low-Cost Asphaltenes-Derived Carbon Fibers with V2O5 for Supercapacitor Application. Energy Fuels 2022, 36, 3328–3338. [Google Scholar] [CrossRef]
- Panigrahi, K.; Howli, P.; Chattopadhyay, K.K. 3D network of V2O5 for flexible symmetric supercapacitor. Electrochim. Acta 2020, 337, 135701. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, M.; Huang, Q.; Wang, D.; Yu, R.; Wang, J.; Zheng, Z.; Wang, D. V2O5 Textile Cathodes with High Capacity and Stability for Flexible Lithium-Ion Batteries. Adv. Mater. 2020, 32, 1906205. [Google Scholar] [CrossRef] [PubMed]
- Qian, A.; Pang, Y.; Wang, G.; Hao, Y.; Liu, Y.; Shi, H.; Chung, C.H.; Du, Z.; Cheng, F. Pseudocapacitive Charge Storage in MXene–V2O5 for Asymmetric Flexible Energy Storage Devices. ACS Appl. Mater. Interf. 2020, 12, 54791–54797. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Wu, Q. Review of V2O5-based nanomaterials as electrode for supercapacitor. J. Nanopart. Res. 2019, 21, 201. [Google Scholar] [CrossRef]
- Xu, X.; Xiong, F.; Meng, J.; Wang, X.; Niu, C.; An, Q.; Mai, L. Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398. [Google Scholar] [CrossRef]
- Choudhury, A.; Bonso, J.S.; Wunch, M.K.; Yang, S.; Ferraris, J.P.; Yang, D.J. In-situ synthesis of vanadium pentoxide nanofibre/exfoliated graphene nanohybrid and its supercapacitor applications. J. Power Source 2015, 287, 283–290. [Google Scholar] [CrossRef]
- Raj, T.N.V.; Hoskeri, P.A.; Hamzad, S.; Anantha, M.S.; Joseph, C.M.; Muralidhara, H.B.; Kumar, K.Y.; Alharti, F.A.; Jeong, B.-H.; Raghu, M.S. Moringa Oleifera leaf extract mediated synthesis of reduced graphene oxide-vanadium pentoxide nanocomposite for enhanced specific capacitance in supercapacitors. Inorg. Chem. Comm. 2022, 142, 109648. [Google Scholar]
- Wang, Q.; Zou, Y.; Xiang, C.; Chu, H.; Zhang, H.; Xu, F.; Sun, L.; Tang, C. High-performance supercapacitor based on V2O5/carbon nanotubes-super activated carbon ternary composite. Ceram. Int. 2016, 42, 12129–12135. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Purushothaman, K.K.; Muralidharan, G. V2O5/nitrogen enriched mesoporous carbon spheres nanocomposite as supercapacitor electrode. Microporous Mesoporous Mater. 2018, 258, 83–94. [Google Scholar] [CrossRef]
- Dinesh, A.; Ramadas, A.; Anantha, M.S.; Umesh, M.K.; Venkatesh, K.; Kundu, M.; Muralidhara, H.B.; Kumar, K.Y. Synergistic behavior of vanadium pentoxide-carbon sphere electrocatalyst towards iron-based redox flow battery and supercapacitor applications. J. Energy Storage 2022, 55, 105487. [Google Scholar] [CrossRef]
- Roy, A.; Ray, A.; Sadhukhan, P.; Saha, S.; Das, S. Morphological behaviour, electronic bond formation and electrochemical performance study of V2O5-polyaniline composite and its application in asymmetric supercapacitor. Mater. Res. Bull. 2018, 107, 379–390. [Google Scholar] [CrossRef]
- Bai, M.-H.; Liu, T.-Y.; Luan, F.; Li, Y.; Liu, X.-X. Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2014, 2, 10882–10888. [Google Scholar] [CrossRef]
- Sun, X.; Li, Q.; Mao, Y. Understanding the influence of polypyrrole coating over V2O5 nanofibers on electrochemical properties. Electrochim. Acta 2015, 174, 563–573. [Google Scholar] [CrossRef]
- Qu, Q.; Zhu, Y.; Gao, X.; Wu, Y. Core–Shell Structure of Polypyrrole Grown on V2O5 Nanoribbon as High-Performance Anode Material for Supercapacitors. Adv. Energy Mater. 2012, 2, 950–955. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Liu, C.; Wang, J.; Du, Y.; Gao, G.; Wu, G.; Cao, G. Gradient Oxygen Vacancies in V2O5/PEDOT Nanocables for High-Performance Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668–677. [Google Scholar] [CrossRef]
- Khatoon, H.; Iqbal, S.; Ahmad, S. Influence of medium on structure, morphology and electrochemical properties of polydiphenylamine/vanadium pentoxide composite. SN Appl. Sci. 2019, 1, 261. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Sedghi, A.; Miankushki, H.N.; Khalaj, M. Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy 2021, 214, 118950. [Google Scholar] [CrossRef]
- Vigneshwaran, J.; Abraham, S.; Muniyandi, B.; Prasankumar, T.; Li, J.-T.; Jose, S. Fe2O3 decorated graphene oxide/polypyrrole matrix for high energy density flexible supercapacitor. Surf. Interf. 2021, 27, 101572. [Google Scholar] [CrossRef]
- Ishaq, S.; Moussa, M.; Kanwal, F.; Ayub, R.; Van, T.N.; Azhar, U.; Losic, D. One step strategy for reduced graphene oxide/cobalt-iron oxide/polypyrrole nanocomposite preparation for high performance supercapacitor electrodes. Electrochim. Acta 2022, 427, 140883. [Google Scholar] [CrossRef]
- Wang, W.; Lei, W.; Yao, T.; Xia, X.; Huang, W.; Hao, Q.; Wang, X. One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochim. Acta 2013, 108, 118–126. [Google Scholar] [CrossRef]
- Ji, X.; Xu, Q.; Zhou, T.; Wang, X.; Xu, H.; Yao, X.; Lan, W.; Kong, Y. Synthesis of poly (aniline-co-m-aminophenol)/graphene/NiO nanocomposite and its application in supercapacitors. Synt. Met. 2016, 211, 14–18. [Google Scholar] [CrossRef]
- Alves, A.P.P.; Koizumi, R.; Samanta, A.; Machado, L.D.; Singh, A.K.; Galvao, D.S.; Silva, G.G.; Tiwary, C.S.; Ajayan, P.M. One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance. Nano Energy 2017, 31, 225–232. [Google Scholar] [CrossRef]
- Hsu, F.-H.; Wu, T.-M. Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor. J. Solid State Electrochem. 2016, 20, 691–698. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, A.; Zhang, Y.; Li, W.; Qin, Y. Evaporation-induced hydrated graphene/polyaniline/carbon cloth integration towards high mass loading supercapacitor electrodes. Chem. Eng. J. 2022, 445, 136727. [Google Scholar] [CrossRef]
- Verma, S.K.; Kar, P.; Yang, D.J.; Choudhury, A. Poly(m-aminophenol)/functionalized multi-walled carbon nanotube nanocomposite-based alcohol sensors. Sens. Actuators B 2015, 219, 199–208. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Anand, S.; Shalini, K.; Ul-Islum, M.; Yang, D.-J.; Choudhury, A. MnMoO4 nanorods-encapsulated carbon nanofibers hybrid mat as binder-free electrode for flexible asymmetric supercapacitors. Mater. Sci. Semicond. Process. 2021, 136, 106176. [Google Scholar] [CrossRef]
- Jadhav, C.D.; Pandit, B.; Karade, S.S.; Sankapal, B.R.; Chavan, P.G. Enhanced field emission properties of V2O5/MWCNTs nanocomposite. Appl. Phys. A 2018, 124, 794. [Google Scholar] [CrossRef]
- Chen, C.; Sun, C.; Gao, Y. Electrosynthesis of poly (aniline-co-p-aminophenol) having electrochemical properties in a wide pH range. Electrochim. Acta 2008, 53, 3021–3028. [Google Scholar] [CrossRef]
- Kar, P.; Pradhan, N.C.; Adhikari, B. Induced doping by sodium ion in poly(m-aminophenol) through the functional groups. Synth. Met. 2010, 160, 13–14. [Google Scholar] [CrossRef]
- Zoromba, M.S.; Abdel-Aziz, M.H.; Bassyouni, M.; Attar, A.; Al-Hossainy, A.F. Synthesis and characterization of Poly (ortho-aminophenol-co-para-toluidine) and its application as semiconductor thin film. J. Mol. Struct. 2021, 1225, 129131. [Google Scholar] [CrossRef]
- Ehsani, A.; Mahjani, M.G.; Jafarian, M. Electrosynthesis of poly ortho aminophenol films and nanoparticles: A comparative study. Synth. Met. 2012, 162, 199–204. [Google Scholar] [CrossRef]
- Kundu, S.; Satpati, B.; Mukherjee, M.; Kar, T.; Pradhan, S.K. Hydrothermal synthesis of polyaniline intercalated vanadium oxide xerogel hybrid nanocomposites: Effective control of morphology and structural characterization. New J. Chem. 2017, 41, 3634–3645. [Google Scholar] [CrossRef]
- Choudhury, A.; Kim, J.-H.; Yang, K.-S.; Yang, D.-J. Facile synthesis of self-standing binder-free vanadium pentoxide-carbon nanofiber composites for high-performance supercapacitors. Electrochim. Acta 2016, 213, 400–407. [Google Scholar] [CrossRef]
- Far, H.M.; Donthula, S.; Taghvaee, T.; Saeed, A.M.; Garr, Z.; Sotiriou-Leventis, C.; Leventis, N. Air-oxidation of phenolic resin aerogels: Backbone reorganization, formation of ring-fused pyrylium cations, and the effect on microporous carbons with enhanced surface areas. RSC Adv. 2017, 7, 51104–51120. [Google Scholar] [CrossRef]
- Paul, S.; Choi, K.S.; Lee, D.J.; Sudhagar, P.; Kang, Y.S. Factors affecting the performance of supercapacitors assembled with polypyrrole/multi-walled carbon nanotube composite electrodes. Electrochim. Acta 2012, 78, 649–655. [Google Scholar] [CrossRef]
- Asen, P.; Shahrokhian, S.; Zad, A.I. One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high-performance supercapacitor. Int. J. Hydrogen Energy 2017, 42, 21073–21085. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Harrison, I.; Chong, K.F.; Zainal, Z.; Ng, C.H.; Huang, N.M. Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 2015, 157, 88–94. [Google Scholar] [CrossRef]
- Xiong, P.; Hu, C.; Fan, Y.; Zhang, W.; Zhu, J.; Wang, X. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J. Power Source 2014, 266, 384–392. [Google Scholar] [CrossRef]
- Moyseowicz, A.; Sliwak, A.; Miniach, E.; Gryglewicz, G. Polypyrrole/iron oxide/reduced graphene oxide ternary composite as a binderless electrode material with high cyclic stability for supercapacitors. Compos. Part B Eng. 2017, 109, 23–29. [Google Scholar] [CrossRef]
- Asen, P.; Shahrokhian, S. A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. J. Phys. Chem. C 2017, 121, 6508–6519. [Google Scholar] [CrossRef]
- Du, Y.; Wang, X.; Li, B.; Lü, H.; Shen, Y. AQDS-guided growth of nanocilia-like polyaniline on graphene nanofiber as cathode material for high-performance asymmetric supercapacitors. Synth. Met. 2021, 272, 116660. [Google Scholar] [CrossRef]
- Shen, Z.M.; Luo, X.J.; Zhu, Y.Y.; Liu, Y.S. Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. J. Energy Storage 2022, 51, 104475. [Google Scholar] [CrossRef]
- Fan, L.Q.; Liu, G.J.; Wu, J.H.; Liu, L.; Lin, J.M.; Wei, Y.L. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim. Acta 2014, 137, 26–33. [Google Scholar] [CrossRef]
- Poudel, M.B.; Shin, M.; Kim, H.J. Polyaniline-silver-manganese dioxide nanorod ternary composite for asymmetric supercapacitor with remarkable electrochemical performance. Int. J. Hydrogen Energy 2021, 46, 474–485. [Google Scholar] [CrossRef]
- Wang, J.G.; Yang, Y.; Huang, Z.H.; Kang, F. A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 2013, 61, 190–199. [Google Scholar] [CrossRef]
- Misnon, I.I.; Jose, R. Synthesis and electrochemical evaluation of the PANI/δ-MnO2 electrode for high performing asymmetric supercapacitors. New J. Chem. 2017, 41, 6574–6584. [Google Scholar] [CrossRef]
- Karimi, A.; Kazeminezhad, I.; Naderi, L.; Shahrokhian, S. Construction of a ternary nanocomposite, polypyrrole/Fe–Co sulfide-reduced graphene oxide/nickel foam as a novel binder-free electrode for high-performance asymmetric supercapacitors. J. Phys. Chem. C 2020, 124, 4393–4407. [Google Scholar] [CrossRef]
- Han, L.; Tang, P.; Zhang, L. Hierarchical Co3O4@PPy@MnO2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage. Nano Energy 2014, 7, 42–51. [Google Scholar] [CrossRef]
- Tang, P.; Han, L.; Zhang, L. Facile Synthesis of Graphite/PEDOT/MnO2 Composites on Commercial Supercapacitor Separator Membranes as Flexible and High-Performance Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10506–10515. [Google Scholar] [CrossRef]
- Mak, W.F.; Wee, G.; Aravindan, V.; Gupta, N.; Mhaisalkar, S.G.; Madhavi, S. High-energy density asymmetric supercapacitor based on electrospun vanadium pentoxide and polyaniline nanofibers in aqueous electrolyte. J. Electrochem. Soc. 2012, 159, A1481–A1488. [Google Scholar] [CrossRef]
ASCs Cell Configuration | Electrolyte | ED (Wh/kg) | PD (W/kg) | Ref. | |
---|---|---|---|---|---|
Anode | Cathode | ||||
NiO-CoO-PPy | AC | 2 M KOH | 36 | 801 | [69] |
GO/PPy | AC | 1 M Na2SO4 | 21.4 | 453.9 | [70] |
PANI/Ag@MnO2 | AC | 2 M KOH | 49.77 | 1599.75 | [71] |
MnO2@CNF | ACNF | 1 M Na2SO4 | 8.7 | 2080 | [72] |
PANI–MnO2 | AC | 6 M KOH | 20 | 400 | [73] |
PPy/FeCoS-rGO | rGO | 3 M KOH | 28.3 | 810 | [74] |
Co3O4/PPy/MnO2 | AC | 1 M NaOH | 34.3 | 80 | [75] |
Gra/PEDOT/MnO2 | AC | 0.5 M Na2SO4 | 31.4 | 90 | [76] |
V2O5 NF | PANI NF | 3 M KCl | 26.7 | 220 | [77] |
V2O5/amino-FG/PmAP | AC | 1 M KCl | 26 | 4607 | This work |
V2O5/amino-FG/PmAP | AC | 1 M Li2SO4 | 29.6 | 6655 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, S.S.; Dey, B.; Ali, S.S.; Choudhury, A. Fabrication of Flexible Poly(m-aminophenol)/Vanadium Pentoxide/Graphene Ternary Nanocomposite Film as a Positive Electrode for Solid-State Asymmetric Supercapacitors. Nanomaterials 2023, 13, 642. https://doi.org/10.3390/nano13040642
Hossain SS, Dey B, Ali SS, Choudhury A. Fabrication of Flexible Poly(m-aminophenol)/Vanadium Pentoxide/Graphene Ternary Nanocomposite Film as a Positive Electrode for Solid-State Asymmetric Supercapacitors. Nanomaterials. 2023; 13(4):642. https://doi.org/10.3390/nano13040642
Chicago/Turabian StyleHossain, SK Safdar, Baban Dey, Syed Sadiq Ali, and Arup Choudhury. 2023. "Fabrication of Flexible Poly(m-aminophenol)/Vanadium Pentoxide/Graphene Ternary Nanocomposite Film as a Positive Electrode for Solid-State Asymmetric Supercapacitors" Nanomaterials 13, no. 4: 642. https://doi.org/10.3390/nano13040642
APA StyleHossain, S. S., Dey, B., Ali, S. S., & Choudhury, A. (2023). Fabrication of Flexible Poly(m-aminophenol)/Vanadium Pentoxide/Graphene Ternary Nanocomposite Film as a Positive Electrode for Solid-State Asymmetric Supercapacitors. Nanomaterials, 13(4), 642. https://doi.org/10.3390/nano13040642