Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System
Abstract
:1. Introduction
2. Introduction System Modeling
2.1. System Component Modeling
2.2. Economical Parameters Modeling
3. Methodology and Software Tool
3.1. Load Profil
3.2. Wind Resources
3.3. Grid Parameters
4. Simulation Results and Discussion
4.1. Power Production
4.2. Economic and Energy Benefits
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
HOMER | Hybrid Optimization of Multiple Electric Renewables |
LCOE | Levelized Cost of Energy |
NPC | Net Present Cost |
WRF | Weather Research Forecasting |
CDF | Cumulative Distribution Function |
DEG | Diesel Engine generator |
BMS | Biomass System |
COE | Cost of Energy |
NREL | National Renewable Energy Laboratory |
BSS | Battery Storage System |
NPC | Net Present Cost |
FC | Fuel Cell |
KSA | Kingdom of Saudi Arabia |
DG | Diesel Generator |
PV | Photovoltaic |
RE | Renewable Energy |
RES | Renewable Energy Sources |
SEC | Saudi Electricity Company |
HRES | Hybrid Renewable Energy System |
DCF | Discounted Cash Flow |
LFS | Load Following Strategy |
GHI | Global Horizontal Irradiance |
HRES | Hybrid Renewable Energy System |
KACARE | King Abdullah City for Atomic and Renewable Energy |
REFIT | Renewable Energy Feed in Tariff |
kWh | Kilo Watt per hour |
mUSD | Million USD |
References
- Aziz, A.S.; Tajuddin, M.F.N.; Adzman, M.R.; Azmi, A.; Ramli, M.A. Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renew. Energy 2019, 138, 775–792. [Google Scholar] [CrossRef]
- Day, C.; Day, G. Climate change, fossil fuel prices and depletion: The rationale for a falling export tax. Econ. Model. 2017, 63, 153–160. [Google Scholar] [CrossRef]
- Ashourian, M.H.; Cherati, S.M.; Zin, A.M.; Niknam, N.; Mokhtar, A.S.; Anwari, M. Optimal green energy management for island resorts in Malaysia. Renew. Energy 2013, 51, 36–45. [Google Scholar] [CrossRef]
- Renewables 2019, Global Status Report [Online]. Available online: https://www.ren21.net/reports/global-status-report/ (accessed on 2 December 2022).
- Nag, A.K.; Sarkar, S. Modeling of hybrid energy system for futuristic energy demand of an Indian rural area and their optimal and sensitivity analysis. Renew. Energy 2018, 118, 477–488. [Google Scholar] [CrossRef]
- Mas’Ud, A.; Al-Garni, H. Optimum Configuration of a Renewable Energy System Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in Northern Saudi Arabia. Sustainability 2021, 13, 5123. [Google Scholar] [CrossRef]
- El-Sebaii, A.; Al-Hazmi, F.; Al-Ghamdi, A.; Yaghmour, S. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl. Energy 2010, 87, 568–576. [Google Scholar] [CrossRef]
- Zell, E.; Gasim, S.; Wilcox, S.; Katamoura, S.; Stoffel, T.; Shibli, H.; Engel-Cox, J.; Al Subie, M. Assessment of solar radiation resources in Saudi Arabia. Sol. Energy 2015, 119, 422–438. [Google Scholar] [CrossRef] [Green Version]
- Salah, M.M.; Abo-Khalil, A.G.; Praveen, R. Wind speed characteristics and energy potential for selected sites in Saudi Arabia. J. King Saud Univ.—Eng. Sci. 2019, 33, 119–128. [Google Scholar] [CrossRef]
- Baseer, M.; Meyer, J.; Alam, M.; Rehman, S. Wind speed and power characteristics for Jubail industrial city, Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 52, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.; Mentes, S.S.; Unal, E.; Unal, Y.; Efe, B.; Barutcu, B.; Onol, B.; Topcu, H.S.; Incecik, S. Short term wind energy resource prediction using WRF model for a location in western part of Turkey. J. Renew. Sustain. Energy 2021, 13, 013303. [Google Scholar] [CrossRef]
- Awan, A.B.; Zubair, M.; Abokhalil, A.G. Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia. Sustainability 2018, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Jurgenson, S.; Bayyari, F.M.; Parker, J. A comprehensive renewable energy program for Saudi Vision 2030. Renew. Energy Focus 2016, 17, 182–183. [Google Scholar] [CrossRef]
- Hepbasli, A.; Alsuhaibani, Z. A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renew. Sustain. Energy Rev. 2011, 15, 5021–5050. [Google Scholar] [CrossRef]
- SEC Annual Report [Online]. Available online: https://www.se.com.sa/en-us/Pages/AnnualReports.aspx (accessed on 1 September 2022).
- Ramli, M.A.; Hiendro, A.; Al-Turki, Y.A. Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia. Renew. Energy 2016, 91, 374–385. [Google Scholar] [CrossRef]
- Shaahid, S.M.; El-Amin, I.; Rehman, S.; Al-Shehri, A.; Ahmad, F.; Bakashwain, J.; Al-Hadhrami, L.M. Techno-Economic Potential of Retrofitting Diesel Power Systems with Hybrid Wind-Photovoltaic-Diesel Systems for Off-Grid Electrification of Remote Villages of Saudi Arabia. Int. J. Green Energy 2010, 7, 632–646. [Google Scholar] [CrossRef]
- Seedahmed, M.M.; Ramli, M.A.; Bouchekara, H.R.; Shahriar, M.S.; Milyani, A.H.; Rawa, M. A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia. Alex. Eng. J. 2021, 61, 5183–5202. [Google Scholar] [CrossRef]
- Almushaikah, A.S.; A Almasri, R. Evaluating the potential energy savings of residential buildings and utilizing solar energy in the middle region of Saudi Arabia—Case study. Energy Explor. Exploit. 2020, 39, 1457–1490. [Google Scholar] [CrossRef]
- Asrari, A.; Ghasemi, A.; Javidi, H. Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study. Renew. Sustain. Energy Rev. 2012, 16, 3123–3130. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems. Energy Convers. Manag. 2016, 115, 265–275. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Ramli, M.A. Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Convers. Manag. 2017, 155, 42–57. [Google Scholar] [CrossRef]
- Al-Sharafi, A.; Sahin, A.Z.; Ayar, T.; Yilbas, B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 69, 33–49. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Roy, N.K.; Hossain, E.; Pota, H.R. Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh. IEEE Access 2019, 7, 150120–150140. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Ozerdem, B.; Ozer, S.; Tosun, M. Feasibility study of wind farms: A case study for Izmir, Turkey. J. Wind. Eng. Ind. Aerodyn. 2006, 94, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Das, B.K.; Hoque, N.; Mandal, S.; Pal, T.K.; Raihan, A. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy 2017, 134, 775–788. [Google Scholar] [CrossRef]
- Nurunnabi; Roy, N.K.; Mahmud, A. Investigating the environmental and socio-economic impacts of grid-tied photovoltaic and on-shore wind systems in Bangladesh. IET Renew. Power Gener. 2018, 12, 1082–1090. [Google Scholar] [CrossRef]
- Sandeep, G.; Vakula, V. Optimal combination and sizing of a standalone hybrid power system using HOMER. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 4141–4144. [Google Scholar] [CrossRef]
- Murphy, P.M.; Twaha, S.; Murphy, I.S. Analysis of the cost of reliable electricity: A new method for analyzing grid connected solar, diesel and hybrid distributed electricity systems considering an unreliable electric grid, with examples in Uganda. Energy 2014, 66, 523–534. [Google Scholar] [CrossRef]
- Hafez, O.; Bhattacharya, K. Optimal planning and design of a renewable energy based supply system for microgrids. Renew. Energy 2012, 45, 7–15. [Google Scholar] [CrossRef]
- Ren, H.; Wu, Q.; Gao, W.; Zhou, W. Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications. Energy 2016, 113, 702–712. [Google Scholar] [CrossRef]
- Ismail, M.; Moghavvemi, M.; Mahlia, T.; Muttaqi, K. Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis. Renew. Sustain. Energy Rev. 2015, 42, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Ramli, M.A.M.; Twaha, S. Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 45, 649–661. [Google Scholar] [CrossRef]
- Almutairi, K.; Almutairi, M.; Harb, K.; Marey, O. Optimal Sizing Grid-Connected Hybrid PV/Generator/Battery Systems Following the Prediction of CO2 Emission and Electricity Consumption by Machine Learning Methods (MLP and SVR): Aseer, Tabuk, and Eastern Region, Saudi Arabia. Front. Energy Res. 2022, 10, 879373. [Google Scholar] [CrossRef]
- Shaahid, S.; Al-Hadhrami, L.; Rahman, M. Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia—A review. Renew. Sustain. Energy Rev. 2013, 19, 589–597. [Google Scholar] [CrossRef]
- Dabbaghiyan, A.; Fazelpour, F.; Abnavi, M.D.; Rosen, M.A. Evaluation of wind energy potential in province of Bushehr, Iran. Renew. Sustain. Energy Rev. 2015, 55, 455–466. [Google Scholar] [CrossRef]
- Seedahmed, M.M.; Ramli, M.A.; Bouchekara, H.R.; Milyani, A.H.; Rawa, M.; Budiman, F.N.; Muktiadji, R.F.; Hassan, S.M.U. Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia. Alex. Eng. J. 2021, 61, 6523–6540. [Google Scholar] [CrossRef]
- Luta, D.N.; Raji, A.K. Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation. Int. J. Hydrog. Energy 2018, 43, 9535–9548. [Google Scholar] [CrossRef]
- Bagheri, M.; Delbari, S.H.; Pakzadmanesh, M.; Kennedy, C.A. City-integrated renewable energy design for low-carbon and climate-resilient communities. Appl. Energy 2019, 239, 1212–1225. [Google Scholar] [CrossRef]
- Diab, F.; Lan, H.; Zhang, L.; Ali, S. An environmentally friendly factory in Egypt based on hybrid photovoltaic/wind/diesel/battery system. J. Clean. Prod. 2016, 112, 3884–3894. [Google Scholar] [CrossRef] [Green Version]
- Lao, C.; Chungpaibulpatana, S. Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia 2017, 138, 524–529. [Google Scholar] [CrossRef]
- Islam, R.; Akter, H.; Howlader, H.O.R.; Senjyu, T. Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh. Energies 2022, 15, 6381. [Google Scholar] [CrossRef]
- Al-Badi, A.; Al Wahaibi, A.; Ahshan, R.; Malik, A. Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman. Energies 2022, 15, 5379. [Google Scholar] [CrossRef]
Wind Turbine Parameter | Values |
---|---|
Manufacture | General Electric |
Type, Model | GE 1.5 MW turbine |
Power Rate | 1.5 MW each |
Peak Power | 1.5 MW |
Cut-in-speed | 4 m/s |
Rated output speed | 15 m/s |
Cut-out-speed | 25 m/s |
Hub/Tower Heights | 80–100 m |
Capital Cost of WT | 3 MUSD per WT |
Replacement Cost of WT | 3 MUSD per WT |
Operation & Maintenance Cost per unit | 30 kUSD/year |
Applied Losses | 22% |
Lifetime | 20 years |
Total Wind Capacity (no losses) | 7.5 MW |
Converter capacity and lifetime | 250 kW-15 years |
Converter cost and efficiency | 300 USD/kW-efficiency (95%) |
Converter Replacement cost | 300 USD |
Battery Bank Capacity | 200 kWh |
Annual Total Production | Annual Energy Consumed by the Load | Annual Energy Sales to the Utility | Annual Excess Electricity | RE Fraction |
---|---|---|---|---|
30.47 GWh-WT | 64.72 GWh | 9.60 GWh | - | |
34.26 GWh-Grid | 47.1% | |||
100% | 100% | 14.8% | 0% |
Configuration | Territory | COE (USD) | NPC (mUSD) | Ref |
---|---|---|---|---|
DG/WT/BSS/FC/Converter | Saudi Arabia | 0.271 | 7.045 | [18] |
PV/BSS/Converter/Grid | Saudi Arabia | 0.110 | 14.00 | [38] |
WT/PV/FC/Converter | South Africa | 7.540 | 38.4 | [39] |
Wind/PV/DG | Saudi Arabia | 0.118 | 20.15 | [17] |
Wind/PV/Converter | Saudi Arabia | 0.329 | 3.54 | [16] |
Wind/Grid | Bangladesh | 0.168 | 30.18 | [24] |
DG/WT/PV/BSS/BMS/Converter | Canada | 0.285 | 23.9 | [40] |
PV/Grid | Saudi Arabia | 0.054 | 12.65 | [22] |
WT/PV/BSS | Saudi Arabia | 0.329 | 3.54 | |
DG/WT/PV | Egypt | 0.190 | 1.68 | [41] |
PV/DG/BSS | Cambodia | 0.377 | 16.66 | [42] |
PV/Wind/BSS | Bangladesh | 0.358 | 1.26 | [43] |
PV/WT/FC/Converter | Oman | 0.181 | 96.5 | [44] |
WT/Grid/BSS/Converter | Saudi Arabia | 0.060 | 50.8 | Current Investigation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Z. Alharthi, Y. Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System. Energies 2023, 16, 2242. https://doi.org/10.3390/en16052242
Z. Alharthi Y. Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System. Energies. 2023; 16(5):2242. https://doi.org/10.3390/en16052242
Chicago/Turabian StyleZ. Alharthi, Yahya. 2023. "Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System" Energies 16, no. 5: 2242. https://doi.org/10.3390/en16052242
APA StyleZ. Alharthi, Y. (2023). Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System. Energies, 16(5), 2242. https://doi.org/10.3390/en16052242