Micromagnetics of Microwave-Assisted Switching in Co-Pt-Based Nanostructures: Switching Time Minimization
Abstract
:1. Introduction
2. Micromagnetic Simulation Details
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Okamoto, S.; Kikuchi, N.; Furuta, M.; Kitakami, O.; Shimatsu, T. Microwave assisted magnetic recording technologies and related physics. J. Phys. D Appl. Phys. 2015, 48, 353001. [Google Scholar] [CrossRef]
- Thirion, C.; Wernsdorfer, W.; Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat. Mater. 2003, 2, 524–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.-G.; Zhu, X.; Tang, Y. Microwave Assisted Magnetic Recording. IEEE Trans. Magn. 2008, 44, 125–131. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, P.-W.; Hernandez, S.; Ju, G.; Rausch, T. Systematic Evaluation of Microwave-Assisted Magnetic Recording. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Suto, H.; Kudo, K.; Nagasawa, T.; Kanao, T.; Mizushima, K.; Sato, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O. Theoretical study of thermally activated magnetization switching under microwave assistance: Switching paths and barrier height. Phys. Rev. B 2015, 91, 094401. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Wang, X.R. Magnetization reversal through synchronization with a microwave. Phys. Rev. B 2006, 74, 132401. [Google Scholar] [CrossRef] [Green Version]
- Boone, C.T.; Katine, J.A.; Marinero, E.E.; Pisana, S.; Terris, B.D. Demonstration of microwave assisted magnetic reversal in perpendicular media. J. Appl. Phys. 2012, 111, 07B907. [Google Scholar] [CrossRef]
- Kikuchi, N.; Sato, K.; Kikuchi, S.; Okamoto, S.; Shimatsu, T.; Kitakami, O.; Osawa, H.; Suzuki, M. Microwave-assisted switching in CoCrPt granular medium under continuous microwave fields. J. Appl. Phys. 2019, 126, 083908. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, M.; Cher, K.M.; Wong, H.S.; Chung, H.J.; Low, B.H.; Yang, Y.; Liu, Z.; Tjiptoharsono, F. Development of Spin-Torque Oscillators and High Ku CoPt Media with Small Grain Size for Microwave-Assisted Magnetic Recording. IEEE Trans. Magn. 2015, 51, 1–7. [Google Scholar] [CrossRef]
- Abert, C.; Bruckner, F.; Vogler, C.; Suess, D. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque. AIP Adv. 2018, 8, 056008. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zha, C.L.; Bonetti, S.; Persson, J.; Åkerman, J. Microwave generation of tilted-polarizer spin torque oscillator. J. Appl. Phys. 2009, 105, 07D116. [Google Scholar] [CrossRef]
- Zhu, J.-G. Impact of Spin Torque Oscillator Frequency in Microwave-Assisted Magnetic Recording. IEEE Trans. Magn. 2019, 55, 2937996. [Google Scholar] [CrossRef]
- Yoshida, K.; Yokoe, M.; Ishikawa, Y.; Kanai, Y. Spin Torque Oscillator with Negative Magnetic Anisotropy Materials for MAMR. IEEE Trans. Magn. 2010, 46, 2466–2469. [Google Scholar] [CrossRef]
- Suess, D. Micromagnetics of exchange spring media: Optimization and limits. J. Magn. Magn. Mater. 2007, 308, 183–197. [Google Scholar] [CrossRef]
- Bashir, M.A.; Schrefl, T.; Dean, J.; Goncharov, A.; Hrkac, G.; Bance, S.; Allwood, D.; Suess, D. Microwave-Assisted Magnetization Reversal in Exchange Spring Media. IEEE Trans. Magn. 2008, 44, 3519–3522. [Google Scholar] [CrossRef]
- Li, S.; Livshitz, B.; Bertram, H.N.; Fullerton, E.E.; Lomakin, V. Microwave-assisted magnetization reversal and multilevel recording in composite media. J. Appl. Phys. 2009, 105, 07B909. [Google Scholar] [CrossRef]
- Suto, H.; Kanao, T.; Nagasawa, T.; Mizushima, K.; Sato, R.; Kikuchi, N.; Okamoto, S. Microwave-magnetic-field-induced magnetization excitation and assisted switching of antiferromagnetically coupled magnetic bilayer with perpendicular magnetization. J. Appl. Phys. 2018, 125, 153901. [Google Scholar] [CrossRef]
- Greaves, S.; Kanai, Y.; Muraoka, H. Antiferromagnetically Coupled Media for Microwave-Assisted Magnetic Recording. IEEE Trans. Magn. 2017, 54, 1–11. [Google Scholar] [CrossRef]
- Wang, J.-P. Tilting for the top. Nat. Mater. 2005, 4, 191–192. [Google Scholar] [CrossRef]
- Krone, P.; Makarov, D.; Albrecht, M.; Schrefl, T. Magnetization reversal of bit patterned media: Role of the angular orientation of the magnetic anisotropy axes. J. Appl. Phys. 2010, 108, 013906. [Google Scholar] [CrossRef]
- Varvaro, G.; Agostinelli, E.; Laureti, S.; Testa, A.M.; Generosi, A.; Paci, B.; Albertini, V. Study of Magnetic Easy Axis 3-D Arrangement in L10 CoPt(111)/Pt(111)/MgO(100) Tilted System for Perpendicular Recording. IEEE Trans. Magn. 2008, 44, 643–647. [Google Scholar] [CrossRef]
- Wang, J.-P.; Shen, W.K.; Bai, J.M.; Victora, R.H.; Judy, J.H.; Song, W.L. Composite media (dynamic tilted media) for magnetic recording. Appl. Phys. Lett. 2005, 86, 142504. [Google Scholar] [CrossRef]
- Zou, Y.Y.; Wang, J.P.; Hee, C.H.; Chong, T.C. Tilted media in a perpendicular recording system for high areal density recording. Appl. Phys. Lett. 2003, 82, 2473–2475. [Google Scholar] [CrossRef]
- Chan, K.S.; Wood, R.; Rahardja, S. Maximum Likelihood Detection for 3-D-MAMR. IEEE Trans. Magn. 2019, 55, 2944800. [Google Scholar] [CrossRef]
- Tudosa, I.; Stamm, C.; Kashuba, A.B.; King, F.; Siegmann, H.C.; Stöhr, J.; Ju, G.; Lu, B.; Weller, D. The ultimate speed of magnetic switching in granular recording media. Nature 2004, 428, 831–833. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-G.; Wang, Y. Microwave Assisted Magnetic Recording Utilizing Perpendicular Spin Torque Oscillator with Switchable Perpendicular Electrodes. IEEE Trans. Magn. 2010, 46, 751–757. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, K.; Tong, W.; Wu, M.; Liu, M.; Sun, N.X. Competition between pumping and damping in microwave-assisted magnetization reversal in magnetic films. Phys. Rev. B 2010, 81, 064402. [Google Scholar] [CrossRef] [Green Version]
- Yanes, R.; Rozada, R.; García-Sánchez, F.; Chubykalo-Fesenko, O.; Pimentel, P.M.; Leven, B.; Hillebrands, B. Modeling of microwave-assisted switching in micron-sized magnetic ellipsoids. Phys. Rev. B 2009, 79, 224427. [Google Scholar] [CrossRef] [Green Version]
- Cimpoesu, D.; Stancu, A. Dynamic and temperature effects in microwave assisted switching: Evidence of chaotic macrospin dynamics. Appl. Phys. Lett. 2011, 99, 132503. [Google Scholar] [CrossRef]
- Kanai, Y.; Itagaki, R.; Greaves, S.J.; Muraoka, H. Micromagnetic Model Simulations Considering Write Head, Spin–Torque Oscillator, and Double-Layered Medium Altogether. IEEE Trans. Magn. 2018, 55, 1–13. [Google Scholar] [CrossRef]
- Rivkin, K.; Ketterson, J.B. Magnetization reversal in the anisotropy-dominated regime using time-dependent magnetic fields. Appl. Phys. Lett. 2006, 89, 25250. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, M. Chirped-microwave assisted magnetization reversal. J. Appl. Phys. 2009, 105, 093903. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Zhang, Z.; Garg, A.; Ketterson, J. Simulating Resonant Magnetization Reversals in Nanomagnets. IEEE Trans. Magn. 2020, 57, 1–4. [Google Scholar] [CrossRef]
- Weller, D.; Moser, A.; Folks, L.; Best, M.; Lee, W.; Toney, M.; Schwickert, M.; Thiele, J.-U.; Doerner, M. High K/sub u/ materials approach to 100 Gbits/in/sup 2/. IEEE Trans. Magn. 2000, 36, 10–15. [Google Scholar] [CrossRef]
- Mohapatra, J.; Xing, M.; Elkins, J.; Liu, J.P. Hard and semi-hard magnetic materials based on cobalt and cobalt alloys. J. Alloys Compd. 2020, 824, 153874. [Google Scholar] [CrossRef]
- Stavroyiannis, S.; Panagiotopoulos, I.; Niarchos, D.; Christodoulides, J.; Zhang, Y.; Hadjipanayis, G. CoPt/Ag nanocomposites for high density recording media. Appl. Phys. Lett. 1998, 73, 3453–3455. [Google Scholar] [CrossRef]
- Skomski, R. Phase formation in L10 magnets. J. Appl. Phys. 2007, 101, 09N517. [Google Scholar] [CrossRef]
- Niarchos, D.; Manios, E.; Panagiotopoulos, I. Towards Terabit/in2 Magnetic Storage Media. MRS Online Proc. Libr. OPL 2008, 1106, 1106-PP02-03. [Google Scholar] [CrossRef]
- Okamoto, S.; Kikuchi, N.; Kitakami, O.; Miyazaki, T.; Shimada, Y.; Fukamichi, K. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys. Rev. B 2002, 66, 024413. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milosevic, M.V.; Van Waeyenberge, B. Fast micromagnetic simulations on GPU—Recent advances made with mumax3. J. Phys. D Appl. Phys. 2018, 51, 123002. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Pousthomis, M.; Anagnostopoulou, E.; Panagiotopoulos, I.; Boubekri, R.; Fang, W.; Ott, F.; Atmane, K.A.; Piquemal, J.-Y.; Lacroix, L.-M.; Viau, G. Localized magnetization reversal processes in cobalt nanorods with different aspect ratios. Nano Res. 2015, 8, 2231–2241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanos, C.; Panagiotopoulos, I. Micromagnetics of Microwave-Assisted Switching in Co-Pt-Based Nanostructures: Switching Time Minimization. Magnetism 2023, 3, 61-70. https://doi.org/10.3390/magnetism3010006
Thanos C, Panagiotopoulos I. Micromagnetics of Microwave-Assisted Switching in Co-Pt-Based Nanostructures: Switching Time Minimization. Magnetism. 2023; 3(1):61-70. https://doi.org/10.3390/magnetism3010006
Chicago/Turabian StyleThanos, Christos, and Ioannis Panagiotopoulos. 2023. "Micromagnetics of Microwave-Assisted Switching in Co-Pt-Based Nanostructures: Switching Time Minimization" Magnetism 3, no. 1: 61-70. https://doi.org/10.3390/magnetism3010006
APA StyleThanos, C., & Panagiotopoulos, I. (2023). Micromagnetics of Microwave-Assisted Switching in Co-Pt-Based Nanostructures: Switching Time Minimization. Magnetism, 3(1), 61-70. https://doi.org/10.3390/magnetism3010006