E-Money Payment: Customers’ Adopting Factors and the Implication for Open Innovation
Abstract
:1. Introduction
2. Methodology
3. Construct and Indicator
4. Model Evaluation and Discussion
4.1. Demography
4.2. Model Evaluation
5. Conclusions and Recommendation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dávid, V. Fintech, the new era of financial services. Vez.-Bp. Manag. Rev. 2017, 48, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Engert, W.; Fung, B.S.C.; Hendry, S. Is a Cashless Society Problematic? Bank of Canada: Toronto, ON, Canada, 2018. [Google Scholar]
- Gofe, T.; Tulu, D. Determinants of Customers E-Payment Utilization in Commercial Bank of Ethiopia the Case of Nekemte Town. Int. J. Econ. Bus. Manag. Stud. 2019, 6, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Singhal, S. Digital Wallet Adoption: A Literature Review. Int. J. Manag. Stud. 2019, 6. [Google Scholar] [CrossRef]
- Ayudya, A.C.; Wibowo, A. The Intention to Use E-Money using Theory of Planned Behavior and Locus of Control. J. Keuang. Perbank. 2018, 22, 335–349. [Google Scholar] [CrossRef]
- Lin, X. Factors Influencing the Chinese Customers’ Usage Intention of Korean Mobile Payment. In Proceedings of the 2019 3rd International Conference on E-commerce, E-Business and E-Government—ICEEG 2019, Lyon, France, 18–21 June 2019; pp. 40–44. [Google Scholar] [CrossRef]
- Shanthini, J.S.; Nallathmbi, J.I. A Study On Customer’s Perception Regarding Cashless Transaction in Peikulam Area. Int. J. Bus. Adm. Res. Rev. 2018, 21, 101–108. [Google Scholar]
- Sivasakthi, N.R.D.; Nandhini, M. Cashless transaction: Modes, advantages and disadvantages. Int. J. Appl. Res. 2017, 3, 122–125. [Google Scholar]
- Hu, Z.; Ding, S.; Li, S.; Chen, L.; Yang, S. Adoption Intention of Fintech Services for Bank Users: An Empirical Examination with an Extended Technology Acceptance Model. Symmetry 2019, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Sarika, P.; Vasantha, S. Impact of mobile wallets on cashless transaction. Int. J. Recent Technol. Eng. 2019, 7, 1164–1171. [Google Scholar]
- Roy, S.; Sinha, I. Factors affecting Customers’ adoption of Electronic Payment: An Empirical Analysis. IOSR J. Bus. Manag. 2017, 19, 76–90. [Google Scholar] [CrossRef]
- Moslehi, F.; Haeri, A.; Gholamian, M.r. Investigation of effective factors in expanding electronic payment in Iran using datamining techniques. J. Ind. Syst. Eng. 2019, 12, 61–94. [Google Scholar]
- Coppolino, L.; Romano, L.; D’Antonio, S.; Formicola, V.; Massei, C. Use of the dempster-shafer theory for fraud detection: The mobile money transfer case study. In Intelligent Distributed Computing VIII; Springer: Cham, Switzerland, 2015; pp. 465–474. [Google Scholar]
- Yun, J.H.J.; Zhao, X.; Wu, J.; Yi, J.C.; Park, K.B.; Jung, W.Y. Business model, open innovation, and sustainability in car sharing industry-Comparing three economies. Sustainability 2020, 12, 1883. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.J.; Kim, D.; Yan, M.R. Open innovation engineering—Preliminary study on new entrance of technology to market. Electronics 2020, 9, 791. [Google Scholar] [CrossRef]
- Marques, J.P.C. Closed versus Open Innovation: Evolution or Combination? Int. J. Bus. Manag. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- West, J.; Salter, A.; Vanhaverbeke, W.; Chesbrough, H. Open innovation: The next decade. Res. Policy 2014, 43, 805–811. [Google Scholar] [CrossRef]
- Ortiz, J.; Ren, H.; Li, K.; Zhang, A. Construction of open innovation ecology on the internet: A case study of Xiaomi (China) using institutional logic. Sustainability 2019, 11, 3225. [Google Scholar] [CrossRef] [Green Version]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- Momani, A.; Jamous, M. The Evolution of Technology Acceptance Theories. Int. J. Contemp. Comput. Res. 2017, 1, 51–58. [Google Scholar]
- Friadi, H.; Sumarwan, U. Kirbrandoko Integration of Technology Acceptance Model and Theory of Planned Behaviour of Intention to Use Electronic Money. Int. J. Sci. Res. 2018, 7. [Google Scholar] [CrossRef]
- Lee, W. Understanding Customer Acceptance of Fintech Service: An Extension of the TAM Model to Understand Bitcoin. IOSR J. Bus. Manag. 2018, 20, 34–37. [Google Scholar] [CrossRef]
- Hussain, M.; Mollik, A.T.; Johns, R.; Rahman, M.S. M-payment adoption for bottom of pyramid segment: An empirical investigation. Int. J. Bank Mark. 2019, 37, 362–381. [Google Scholar] [CrossRef]
- Sobti, N. Impact of demonetization on diffusion of mobile payment service in India: Antecedents of behavioral intention and adoption using extended UTAUT model. J. Adv. Manag. Res. 2019, 16, 472–497. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, B.; Rha, J.Y. Determinants of mobile payment usage and the moderating effect of gender: Extending the UTAUT model with privacy risk. Int. J. Electron. Commer. Stud. 2019, 10, 43–64. [Google Scholar] [CrossRef]
- Junadi, S. A Model of Factors Influencing Customer’s Intention to Use E-payment System in Indonesia. Procedia Comput. Sci. 2015, 59, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Oktariyana, M.D.; Ariyanto, D.; Ratnadi, N.M.D. Implementation of UTAUT and D&M Models for Success Assessment of Cashless System. Res. J. Financ. Account. 2019, 10, 127–137. [Google Scholar] [CrossRef]
- Andre, G.V.; Baptista, P.T.; Setiowati, R. The Determinants Factors of Mobile Payment Adoption in DKI Jakarta. J. Res. Mark. 2019, 10, 823–831. [Google Scholar]
- Pool, J.K.; Kazemi, R.V.; Amani, M.; Lashaki, J.K. An extension of the technology acceptance model for the E-Repurchasing of sports match tickets. Int. J. Manag. Bus. Res. 2016, 6, 1–12. [Google Scholar]
- Liébana-Cabanillas, F.; Muñoz-Leiva, F.; Sánchez-Fernández, J. A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Serv. Bus. 2018, 12, 25–64. [Google Scholar] [CrossRef]
- Acheampong, P.; Zhiwen, L.; Antwi, H.A.; Akai, A.; Otoo, A.; Mensah, W.G. Hybridizing an Extended Technology Readiness Index with Technology Acceptance Model (TAM) to Predict E-Payment Adoption in Ghana. Am. J. Multidiscip. Res. 2017, 5, 172–184. [Google Scholar]
- Bailey, A.A.; Pentina, I.; Mishra, A.S.; Mimoun, M.S.B. Mobile payments adoption by US customers: An extended TAM. Int. J. Retail Distrib. Manag. 2017, 45, 626–640. [Google Scholar] [CrossRef]
- Safeena, R.; Date, H.; Hundewale, N.; Kammani, A. Combination of TAM and TPB in Internet Banking Adoption. Int. J. Comput. Theory Eng. 2013, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Wisdom, J.P.; Suite, E.S.; Horwitz, S.M. Innovation Adoption: A Review of Theories and Constructs Jennifer. Adm. Policy Ment. Health 2014, 41, 480–502. [Google Scholar] [CrossRef]
- Pal, A.; Herath, T.; Rao, H.R. A review of contextual factors affecting mobile payment adoption and use. J. Bank. Financ. Technol. 2019, 3, 43–57. [Google Scholar] [CrossRef]
- Lai, P. the Literature Review of Technology Adoption Models and Theories for the Novelty Technology. J. Inf. Syst. Technol. Manag. 2017, 14, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.H.; Kim, D.J.; Hur, Y.; Park, K. An Empirical Study of the Impacts of Perceived Security and Knowledge on Continuous Intention to Use Mobile Fintech Payment Services. Int. J. Hum. Comput. Interact. 2019, 35, 886–898. [Google Scholar] [CrossRef]
- Sivathanu, B. Adoption of digital payment systems in the era of demonetization in India: An empirical study. J. Sci. Technol. Policy Manag. 2019, 10, 143–171. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L.; Li, X.; Guo, Y. Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electron. Commer. Res. Appl. 2019, 33, 100823. [Google Scholar] [CrossRef]
- Alademomi, R.O.; Rufai, O.H.; Teye, E.T.; Sunguh, K.K.; Ashu, H.A.; Oludu, V.O.; Mbugua, C.W. Usage of E-Payment on Bus Rapid Transit (BRT): An Empirical Test, Public Acceptance and Policy Implications in Lagos, Nigeria. Int. J. Bus. Soc. Sci. 2019, 10, 115–126. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hamid, M.R.A.; Sami, W.; Sidek, M.H.M. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. J. Phys. Conf. Ser. 2017, 890. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Ilham, S.; Nik, N.M.K. Examining a Theory of Planned Behavior (TPB) and Technology Acceptance Model (TAM) in Internetpurchasing Using Structural Equation Modeling. Int. Ref. Res. J. 2012, 2, 62–77. [Google Scholar]
- Widayat, W. E-Consumer Behavior: The Roles of Attitudes, Risk Perception on Shopping Intention-Behavior; Atlantis Press: Amsterdam, The Netherland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ghose, A.; Xiao, B. Mobile Payment Adoption: An Empirical Investigation on Alipay. Manag. Sci. 2018, 1–52. [Google Scholar] [CrossRef]
- Salimon, G.M.; Goronduste, H.A.; Abdullah, H. User adoption of Smart Homes Technology in Malaysia: Integration TAM 3,TPB, UTAUT 2 and extension of their constructs for a better prediction. J. Bus. Manag. 2018, 20, 60–69. [Google Scholar] [CrossRef]
- Giri, R.R.W.; Apriliani, D.; Sofia, A. Behavioral Intention Analysis on E-Money Services in Indonesia: Using the modified UTAUT model. In Proceedings of the 1st International Conference on Economics, Business, Entrepreneurship, and Finance (ICEBEF 2018), Bandung, Indonesia, 19 September 2018. [Google Scholar]
- Meuthia, R.; Ananto, R.; Afni, Z.; Setiawan, L. Understanding Millenials’ Intention to Use E-Money: A Study of Students’ University in Padang. ICO-ASCNITY 2019 2020. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Ajzen, I. Customer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Ital. Rev. Agric. Econ. 2015, 70, 121–138. [Google Scholar] [CrossRef]
- Yu, C.S. Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. J. Electron. Commer. Res. 2012, 13, 105–121. [Google Scholar]
- Khatimah, H.; Halim, F. The Intention to Use E-Money Transaction In Indonesia: Conceptual Framework. In Proceedings of the Conference on Business Management Research 2013, Sintok, Malaysia, 11 December 2013. [Google Scholar]
- de Abrahão, R.S.; Moriguchi, S.N.; Andrade, D.F. Intention of adoption of mobile payment: An analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). RAI Rev. Adm. Inovação 2016, 13, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.; Modi, A.; Patel, J. Predicting green product consumption using theory of planned behavior and reasoned action. J. Retail. Consum. Serv. 2016, 29, 123–134. [Google Scholar] [CrossRef]
- Chiemeke, S.C.; Evwiekpaefe, A.E. A conceptual framework of a modified unified theory of acceptance and use of technology (UTAUT) Model with Nigerian factors in E-commerce adoption. Int. Res. J. Rev. 2011, 2, 1719–1726. [Google Scholar]
- Larasati, I.; Havidz, H.; Aima, M.H.; Ali, H.; Iqbal, M.K. Intention to adopt WeChat mobile payment innovation toward Indonesia citizenship based in China. Int. J. Appl. Innov. Eng. Manag. 2018, 7, 105–117. [Google Scholar]
- Mat Shafie, I.S.; Mohd Yusof, Y.L.; Mahmood, A.N.; Mohd Ishar, N.I.; Jamal, H.Z.; Abu Kasim, N.H.A. Factors Influencing the Adoption of E-Payment: An Empirical Study in Malaysia. Adv. Bus. Res. Int. J. 2018, 4, 53–62. [Google Scholar] [CrossRef]
Latent Variable | Operationalization and Measurement Item (Code) | |
---|---|---|
E-Money Usage reason | The reason that customers use the e-money payment in the transaction. | The open-ended question, “What are the advantages and disadvantages, and why use e-money in your transaction?” |
Facilitating Conditions [25,35,37,38] | The degree to which the customer believes that technical infrastructure exists to support the adoption of the e-money payment, measured by the perception of being able to access required resources, as well as to obtain knowledge and the necessary support to use e-money. Assessed using closed-ended five-point-scale questions. |
|
Effort Expectancy (EE) [25,39] | The degree of ease associated with the use of the e-money payment system, measured by the perceptions of the ease of use of e-money services, as well as the ease of learning how to use these services. Assessed using closed-ended five-point-scale questions. |
|
Social Factors (SF) [23,25,38] | The degree to which peers influence the use of the system, whether positively or negatively, measured by the perception of how peers affect customers’ use of e-money payment. Assessed using closed-ended five-point-scale questions. |
|
E-Money Attitude | Attitude is a mental or neural state of readiness, organized through experience, exerting a directive or dynamic influence on the individual’s response to e-money and related matters. Assessed using closed-ended five-point-scale questions. |
|
E-Money Intention Behavior [23,24,38,40] | Actions to continue to use e-money, recommend it to other parties, and maintain features of the associated technology on devices. Assessed using closed-ended five-point-scale questions. |
|
Variables | Cronbach’s Alpha | Rho-A | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|---|
E-Money Attitude | 0.821 | 0.834 | 0.875 | 0.585 |
E-Money Behavior | 0.867 | 0.877 | 0.901 | 0.605 |
Effort Expectancy | 0.912 | 0.915 | 0.930 | 0.656 |
Facilitating Conditions | 0.881 | 0.885 | 0.910 | 0.630 |
Social Factors | 0.835 | 0.843 | 0.876 | 0.542 |
Latent Variable | E-Money Attitude | E-Money Behavior | Effort Expectancy | Facilitating Conditions | Social Factors |
---|---|---|---|---|---|
E-Money Attitude | - | - | - | - | - |
E-Money Behavior | 0.877 | - | - | - | |
Effort Expectancy | 0.770 | 0.739 | - | - | - |
Facilitating Conditions | 0.779 | 0.663 | 0.740 | - | - |
Social Factors | 0.704 | 0.646 | 0.567 | 0.570 | - |
Measurement Item | E-Money Attitude | E-Money Behavior | Effort Expectancy | Facilitating Conditions | Social Factors |
---|---|---|---|---|---|
A-Att1 | 0.822 | 0.589 | 0.686 | 0.625 | 0.465 |
A-Att2 | 0.835 | 0.619 | 0.617 | 0.600 | 0.480 |
A-Att4 | 0.756 | 0.577 | 0.466 | 0.496 | 0.529 |
A-Att5 | 0.760 | 0.582 | 0.473 | 0.488 | 0.398 |
A-Att6 | 0.635 | 0.474 | 0.309 | 0.318 | 0.485 |
BIH-1 | 0.650 | 0.751 | 0.520 | 0.414 | 0.482 |
BIH-2 | 0.616 | 0.834 | 0.560 | 0.554 | 0.444 |
BIH-3 | 0.544 | 0.806 | 0.538 | 0.431 | 0.447 |
BIH-4 | 0.548 | 0.755 | 0.452 | 0.414 | 0.448 |
BIH-5 | 0.647 | 0.855 | 0.586 | 0.558 | 0.490 |
BIH-6 | 0.438 | 0.646 | 0.406 | 0.321 | 0.361 |
EE_1 | 0.567 | 0.513 | 0.845 | 0.569 | 0.443 |
EE_2 | 0.613 | 0.565 | 0.834 | 0.578 | 0.505 |
EE_3 | 0.507 | 0.508 | 0.727 | 0.483 | 0.351 |
EE_4 | 0.510 | 0.498 | 0.810 | 0.524 | 0.475 |
EE_5 | 0.594 | 0.559 | 0.855 | 0.532 | 0.454 |
EE_6 | 0.486 | 0.517 | 0.761 | 0.556 | 0.391 |
EE_7 | 0.579 | 0.580 | 0.827 | 0.520 | 0.396 |
FC_1 | 0.486 | 0.445 | 0.478 | 0.707 | 0.402 |
FC_2 | 0.487 | 0.472 | 0.420 | 0.717 | 0.510 |
FC_3 | 0.535 | 0.432 | 0.511 | 0.840 | 0.378 |
FC_4 | 0.548 | 0.472 | 0.591 | 0.856 | 0.372 |
FC_5 | 0.594 | 0.513 | 0.587 | 0.869 | 0.437 |
FC_6 | 0.546 | 0.447 | 0.556 | 0.757 | 0.383 |
SF_1 | 0.485 | 0.460 | 0.379 | 0.414 | 0.784 |
SF_2 | 0.297 | 0.312 | 0.244 | 0.211 | 0.733 |
SF_3 | 0.283 | 0.316 | 0.194 | 0.208 | 0.705 |
SF_4 | 0.603 | 0.512 | 0.585 | 0.501 | 0.688 |
SF_5 | 0.409 | 0.409 | 0.428 | 0.422 | 0.711 |
SF_6 | 0.477 | 0.437 | 0.370 | 0.396 | 0.791 |
Latent Variables | R-Squared | Adjusted R-Squared |
---|---|---|
E-Money Attitude | 0.603 | 0.596 |
E-Money Behavior | 0.611 | 0.604 |
Latent Variable | E-Money Attitude | E-Money Behavior |
---|---|---|
E-Money Attitude | 2.233 | |
Effort Expectancy | 1.959 | 1.952 |
Social Factors | 1.499 | 1.665 |
Facilitating Conditions | 1.918 |
Path | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T-Statistics (|O/STDEV|) | p-Values |
---|---|---|---|---|---|
E-Money Attitude → E-Money Behavior | 0.483 | 0.494 | 0.101 | 4.758 | 0.000 |
Effort Expectancy → E-Money Behavior | 0.255 | 0.249 | 0.098 | 2.591 | 0.010 |
Social Factors → E-Money Behavior | 0.144 | 0.140 | 0.078 | 1.861 (*) | 0.064 |
Effort Expectancy → E-Money Attitude | 0.329 | 0.326 | 0.080 | 4.106 | 0.000 |
Facilitating Conditions → E-Money Attitude | 0.313 | 0.315 | 0.085 | 3.674 | 0.000 |
Social Factors → E-Money Attitude | 0.274 | 0.276 | 0.078 | 3.525 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widayat, W.; Masudin, I.; Satiti, N.R. E-Money Payment: Customers’ Adopting Factors and the Implication for Open Innovation. J. Open Innov. Technol. Mark. Complex. 2020, 6, 57. https://doi.org/10.3390/joitmc6030057
Widayat W, Masudin I, Satiti NR. E-Money Payment: Customers’ Adopting Factors and the Implication for Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity. 2020; 6(3):57. https://doi.org/10.3390/joitmc6030057
Chicago/Turabian StyleWidayat, Widayat, Ilyas Masudin, and Novita Ratna Satiti. 2020. "E-Money Payment: Customers’ Adopting Factors and the Implication for Open Innovation" Journal of Open Innovation: Technology, Market, and Complexity 6, no. 3: 57. https://doi.org/10.3390/joitmc6030057
APA StyleWidayat, W., Masudin, I., & Satiti, N. R. (2020). E-Money Payment: Customers’ Adopting Factors and the Implication for Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 57. https://doi.org/10.3390/joitmc6030057