The Evaluation of the Local Beer Industry during the COVID-19 Pandemic and Its Relationship with Open Innovation
Abstract
:1. Introduction
2. Methodology
2.1. Questionnaire
2.2. Demographic Profile of Respondents
2.3. Statistical Analysis
3. Results
3.1. Perceived Changes in Drinking Aspects
3.2. Relationship between Demographic Profile and Frequency, Intake, and Expenses
3.3. Conjoint Analysis
4. Discussion
4.1. Perceived Changes in Drinking Aspects
4.2. Relationships between Demographic Profile and Frequency, Intake, and Expenses
4.3. Conjoint Analysis
4.4. The Relationships among Beer, Food, Restaurants, and Open Innovation
5. Conclusions
Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Part 1. Demographics | ||||
Age Group | ( ) Baby Boomer (Birth Year: 1946–1964) | |||
( ) Gen X (Birth Year: 1965–1976) | ||||
( ) Millennial (Birth Year: 1977–1995) | ||||
( ) Gen Z (Birth Year: 1996–2003) | ||||
Sex | ( ) Female | ( ) Male | ||
Monthly Income / Salary | ( ) Less than 21,914 PHP | |||
( ) 21,914–43,828 PHP | ||||
( ) 43,829–76,698 PHP | ||||
( ) >76,698 PHP | ||||
Part 2. Frequency, Intake, and Expense on Beers | ||||
How often did you normally drink local beers in a month? | ||||
( ) 1 to 4 times | ( ) 5 to 8 times | ( ) 9 to 12 times | ( ) More than 12 times | |
During COVID-19 pandemic, how has your frequency (dalas) of drinking local beers changed? | ||||
( ) Remarkably increases | ||||
( ) Increases | ||||
( ) Slightly increases | ||||
( ) Did not change | ||||
( ) Slightly decreases | ||||
( ) Decreases | ||||
( ) Remarkably decreases | ||||
How many 330mL bottles of local beers did you normally consume in a month? | ||||
( ) 1 to 6 | ( ) 7 to 12 | ( ) 13 to 18 | ( ) 19 to 24 | ( ) More than 24 |
During COVID-19 pandemic, how has your intake (dami) of local beers changed? | ||||
( ) Remarkably increases | ||||
( ) Increases | ||||
( ) Slightly increases | ||||
( ) Did not change | ||||
( ) Slightly decreases | ||||
( ) Decreases | ||||
( ) Remarkably decreases | ||||
How much did you normally spend for local beers in a month? | ||||
( ) Less than 500 PHP | ( ) 500 to 999 PHP | ( ) 1000 to 1499 PHP | ||
( ) 1500 to 1999 PHP | ( ) 2000 and above PHP | |||
During COVID-19 pandemic, how has your expenses on local beers changed? | ||||
( ) Remarkably increases | ||||
( ) Increases | ||||
( ) Slightly increases | ||||
( ) Did not change | ||||
( ) Slightly decreases | ||||
( ) Decreases | ||||
( ) Remarkably decreases | ||||
During COVID-19 pandemic, how much has your preference on local beers changed? | ||||
( ) 7—changed completely | ( ) 6 | ( ) 5 | ( ) 4 | |
( ) 3 | ( ) 2 | ( ) 1—no change | ||
Part 3. Conjoint Analysis | ||||
How willing are you to buy each? Rate each 330 mL local beer based on your preference. (7—highest; 1—lowest) |
Appendix B
Frequency | Expense | Intake | Total | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1–4 Times | 5–8 Times | 9–12 Times | More than 12 Times | Less than PHP 500 | PHP 500–999 | PHP 1000–1499 | PHP 1500–1999 | PHP 2000 and above | 1–6 | 7–12 | 13–18 | 19–24 | More than 24 | |||
Age Group | Boomer | 7 | 77 | 89 | 32 | 9 | 47 | 85 | 39 | 25 | 5 | 56 | 45 | 55 | 44 | 205 |
Gen X | 15 | 84 | 75 | 29 | 14 | 71 | 70 | 27 | 21 | 12 | 80 | 41 | 28 | 42 | 203 | |
Millennial | 112 | 47 | 34 | 14 | 92 | 64 | 30 | 12 | 9 | 95 | 51 | 24 | 19 | 18 | 207 | |
Gen Z | 127 | 61 | 37 | 13 | 135 | 66 | 26 | 4 | 7 | 109 | 72 | 33 | 6 | 18 | 238 | |
Total | 261 | 269 | 235 | 88 | 250 | 248 | 211 | 82 | 62 | 221 | 259 | 143 | 108 | 122 | 853 | |
Monthly Income | <PHP 21,914 | 158 | 96 | 62 | 39 | 169 | 108 | 56 | 7 | 15 | 131 | 109 | 51 | 18 | 46 | 355 |
PHP 21,914 – PHP 43, 828 | 75 | 57 | 56 | 20 | 61 | 78 | 41 | 16 | 12 | 64 | 61 | 29 | 29 | 25 | 208 | |
PHP 43, 829– PHP 76, 698 | 17 | 86 | 73 | 18 | 13 | 56 | 75 | 40 | 10 | 13 | 67 | 42 | 44 | 28 | 194 | |
> PHP 76, 698 | 11 | 30 | 44 | 11 | 7 | 6 | 39 | 19 | 25 | 13 | 22 | 21 | 17 | 23 | 96 | |
Total | 261 | 269 | 235 | 88 | 250 | 248 | 211 | 82 | 62 | 221 | 259 | 143 | 108 | 122 | 853 | |
Female | Count | 148 | 181 | 77 | 14 | 158 | 126 | 91 | 25 | 20 | 134 | 184 | 61 | 23 | 18 | 420 |
Expected Count | 128.5 | 132.5 | 115.7 | 43.3 | 123.1 37.6% | 122. 130.0% | 103. 921.7% | 40.4 6.0% | 30.5 4.8% | 108.8 | 127.5 | 70.4 | 53.2 | 60.1 | 420.0 | |
Male | Count | 113 | 88 | 158 | 74 | 92 | 122 | 120 | 57 | 42 | 87 | 75 | 82 | 85 | 104 | 433 |
Expected Count | 132.5 | 136.5 | 119.3 | 44.7 | 126.9 21.2% | 125.9 28.2% | 107.1 27.7% | 41.6 13.2% | 31.5 9.7% | 112.2 | 131.5 | 72.6 | 54.8 | 61.9 | 433.0 | |
Total | Count | 261 | 269 | 235 | 88 | 250 | 248 | 211 | 82 | 62 | 221 | 259 | 143 | 108 | 122 | 853 |
Expected Count | 261.0 | 269.0 | 235.0 | 88.0 | 250.0 29.3% | 248.0 29.1% | 211.0 24.7% | 82.0 9.6% | 62.0 73% | 221.0 | 259.0 | 143.0 | 108.0 | 122.0 | 853.0 |
References
- Chan, M.Z.A.; Chua, J.Y.; Toh, M.; Liu, S.-Q. Survival of probiotic strain lactobacillus paracasei L26 during co-fermentation with S. cerevisiae for the development of a novel Beer Beverage. Food Microbiol. 2019, 82, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Bamforth, C. Progress in brewing science and beer production. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 161–176. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, J.J.; Shreay, S. Culture and Beer Preferences. Available online: http://10.1093/acprof:oso/9780199693801.003.0009 (accessed on 23 January 2022).
- Pilcher, J.M. “Tastes Like Horse Piss”: Asian Encounters with European Beer. Gastronomica 2016, 16, 28–40. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Alcohol and Health 2018. Available online: https://apps.who.int/iris/rest/bitstreams/1151838/retrieve (accessed on 1 October 2021).
- Svatošová, V.; Kosová, P.; Svobodová, Z. Factors influencing consumer behaviour in the beer market in the Czech Republic. Czech J. Food Sci. 2021, 39, 319–328. [Google Scholar] [CrossRef]
- Meyerding, S.G.; Bauchrowitz, A.; Lehberger, M. Consumer preferences for beer attributes in Germany: A conjoint and latent class approach. J. Retail. Consum. Serv. 2018, 47, 229–240. [Google Scholar] [CrossRef]
- Beer Consumption Per Person. Available online: https://ourworldindata.org/grapher/beer-consumption-per-person?tab=table (accessed on 15 June 2022).
- News, A.-C. San Miguel Brewery Income Down 62 Percent in First Half Due to Pandemic. Available online: https://news.abs-cbn.com/business/08/04/20/san-miguel-brewery-income-down-62-percent-in-first-half-due-to-pandemic (accessed on 1 October 2021).
- Valdez, D.A. Asia Brewery Drafts New Ties with Heineken for Philippine Operations. Available online: https://www.bworldonline.com/asia-brewery-drafts-new-ties-with-heineken-for-philippine-operations/#:~:text=Asia%20Brewery%20drafts%20new%20ties%20with%20Heineken%20for%20Philippine%20operations,-October%2015%2C%202020&text=“%5BAsia%20Brewery%20and%20Heineken%5D,the%20Philippines%2C”%20it%20said (accessed on 1 October 2021).
- De Guzman, A.; Barredo, S.F.; Caillan, K.R. Examining the role of depression in the Filipino elderly’s food preferences in prison setting: Data from conjoint analysis and SEM. Int. J. Prison. Health 2020, 16, 135–149. [Google Scholar] [CrossRef]
- Christian, A.; Sunday, E.M. Factors Influencing Brand Preference of Beer Consumption In Port-Harcourt Metropolis, Rivers State, Nigeria. Eur. J. Bus. Manag. 2013, 5, 76–87. [Google Scholar]
- Muggah, E.M.; McSweeney, M.B. Females’ attitude and preference for beer: A conjoint analysis study. Int. J. Food Sci. Technol. 2017, 52, 808–816. [Google Scholar] [CrossRef]
- McCann, S.; Sempos, C.; Freudenheim, J.; Muti, P.; Russell, M.; Nochajski, T.; Ram, M.; Hovey, K.; Trevisan, M. Alcoholic beverage preference and characteristics of drinkers and nondrinkers in western New York (United States). Nutr. Metab. Cardiovasc. Dis. 2003, 13, 2–11. [Google Scholar] [CrossRef]
- Sluik, D.; Bezemer, R.; Sierksma, A.; Feskens, E. Alcoholic Beverage Preference and Dietary Habits: A Systematic Literature Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 2370–2382. [Google Scholar] [CrossRef]
- Jensen, M.K.; Andersen, A.T.; Sørensen, T.I.; Becker, U.; Thorsen, T.; Grønbæk, M. Alcoholic Beverage Preference and Risk of Becoming a Heavy Drinker. Epidemiology 2002, 13, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Caetano, R.; Vaeth, P.A.C.; Ramisetty-Mikler, S.; Rodriguez, L.A. The Hispanic Americans Baseline Alcohol Survey: Alcoholic Beverage Preference Across Hispanic National Groups. Alcohol. Clin. Exp. Res. 2008, 33, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Crosta, A.; Ceccato, I.; Marchetti, D.; La Malva, P.; Maiella, R.; Cannito, L.; Cipi, M.; Mammarella, N.; Palumbo, R.; Verrocchio, M.C.; et al. Psychological factors and consumer behavior during the COVID-19 pandemic. PLoS ONE 2021, 16, e0256095. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F. Multivariate Data Analysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Sohn, S.Y.; Ju, Y.H. Conjoint analysis for recruiting high quality students for college education. Expert Syst. Appl. 2010, 37, 3777–3783. [Google Scholar] [CrossRef]
- Donadini, G.; Porretta, S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef]
- Albert, J.R.G.; Abrigo, M.R.M.; Quimba, F.M.A.; Vizmanos, J.F.V. Poverty, the Middle Class, and Income Distribution Amid COVID-19. Available online: https://think-asia.org/handle/11540/12319 (accessed on 30 January 2022).
- Marinelli, N.; Fabbrizzi, S.; Sottini, V.A.; Sacchelli, S.; Bernetti, I.; Menghini, S. Generation Y, wine and alcohol. A semantic differential approach to consumption analysis in Tuscany. Appetite 2014, 75, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C. Understanding the Difference Between Standard Deviation and Standard Error of the Mean, and Knowing When to Use Which. Indian J. Psychol. Med. 2020, 42, 409–410. [Google Scholar] [CrossRef]
- Göktas, A.; Isçi, Ö. A comparison of the most commonly used measures of association for doubly ordered square contingency tables via simulation. Metodoloski Zv. 2011, 8, 17. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Bolboaca, S.-D.; Jäntschi, L. Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo J. Sci. 2006, 5, 179–200. [Google Scholar]
- Dumas, T.M.; Ellis, W.; Litt, D.M. What Does Adolescent Substance Use Look Like During the COVID-19 Pandemic? Examining Changes in Frequency, Social Contexts, and Pandemic-Related Predictors. J. Adolesc. Health 2020, 67, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Pollard, M.S.; Tucker, J.S.; Green, H.D. Changes in Adult Alcohol Use and Consequences During the COVID-19 Pandemic in the US. JAMA Netw. Open 2020, 3, e2022942. [Google Scholar] [CrossRef] [PubMed]
- Bonny-Noach, H.; Cohen-Louck, K.; Levy, I. Substances use between early and later stages of the COVID-19 pandemic in Israel. Isr. J. Health Policy Res. 2021, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Grossman, E.R.; Benjamin-Neelon, S.E.; Sonnenschein, S. Alcohol Consumption during the COVID-19 Pandemic: A Cross-Sectional Survey of US Adults. Int. J. Environ. Res. Public Health 2020, 17, 9189. [Google Scholar] [CrossRef]
- Adam, W.; Ahnjili, Z.; Gail, G.; Emma, D.L.; Cheneal, P.; Laura, P.; Larissa, M.; Jason, F.; Monica, B. GDS COVID-19 Special Edition: Key Findings Report. Available online: https://www.globaldrugsurvey.com/gds-covid-19-special-edition-key-findings-report/ (accessed on 1 October 2021).
- Callinan, S.; Smit, K.; Mojica-Perez, Y.; D’Aquino, S.; Moore, D.; Kuntsche, E. Shifts in alcohol consumption during the COVID-19 pandemic: Early indications from Australia. Addiction 2021, 116, 1381–1388. [Google Scholar] [CrossRef]
- Alpers, S.; Skogen, J.; Mæland, S.; Pallesen, S.; Rabben, Å.; Lunde, L.-H.; Fadnes, L. Alcohol Consumption during a Pandemic Lockdown Period and Change in Alcohol Consumption Related to Worries and Pandemic Measures. Int. J. Environ. Res. Public Health 2021, 18, 1220. [Google Scholar] [CrossRef]
- de Goeij, M.C.; Suhrcke, M.; Toffolutti, V.; van de Mheen, D.; Schoenmakers, T.M.; Kunst, A.E. How economic crises affect alcohol consumption and alcohol-related health problems: A realist systematic review. Soc. Sci. Med. 2015, 131, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, P.D.; Moura, H.F.; Amaral, R.A.D.; Castaldelli-Maia, J.M.; Malbergier, A. Alcohol Use and COVID-19: Can we Predict the Impact of the Pandemic on Alcohol Use Based on the Previous Crises in the 21st Century? A Brief Review. Front. Psychiatry 2020, 11, 581113. [Google Scholar] [CrossRef]
- Rehm, J.; Kilian, C.; Ferreira-Borges, C.; Jernigan, D.; Monteiro, M.; Parry, C.D.H.; Sanchez, Z.M.; Manthey, J. Alcohol use in times of the COVID 19: Implications for monitoring and policy. Drug Alcohol Rev. 2020, 39, 301–304. [Google Scholar] [CrossRef]
- Colbert, S.; Wilkinson, C.; Thornton, L.; Richmond, R. COVID -19 and alcohol in Australia: Industry changes and public health impacts. Drug Alcohol Rev. 2020, 39, 435–440. [Google Scholar] [CrossRef]
- Mohsin, A.; Hongzhen, L.; Hossain, S.F.A. Impact of COVID-19 Pandemic on Consumer Economy: Countermeasures Analysis. SAGE Open 2021, 11. [Google Scholar] [CrossRef]
- Castaldelli-Maia, J.M.; Segura, L.E.; Martins, S.S. The concerning increasing trend of alcohol beverage sales in the U.S. during the COVID-19 pandemic. Alcohol 2021, 96, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R. Alcohol-Related Diseases Increased as Some People Drank More During the COVID-19 Pandemic. JAMA 2021, 326, 209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, H.; Hu, M.; Wu, S.; Chen, J.; Wang, L.; Luo, T.; Wu, Z.; Liu, Y.; Tang, J.; et al. Alcohol Consumption in China Before and During COVID-19: Preliminary Results from an Online Retrospective Survey. Front. Psychiatry 2020, 11, 597826. [Google Scholar] [CrossRef] [PubMed]
- Telukdarie, A.; Munsamy, M.; Mohlala, P. Analysis of the Impact of COVID-19 on the Food and Beverages Manufacturing Sector. Sustainability 2020, 12, 9331. [Google Scholar] [CrossRef]
- Roggeveen, A.L.; Sethuraman, R. How the COVID-19 Pandemic May Change the World of Retailing. J. Retail. 2020, 96, 169–171. [Google Scholar] [CrossRef]
- Gu, S.; Ślusarczyk, B.; Hajizada, S.; Kovalyova, I.; Sakhbieva, A. Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2263–2281. [Google Scholar] [CrossRef]
- Mehta, S.; Saxena, T.; Purohit, N. The new consumer behaviour paradigm amid COVID-19: Permanent or transient? J. Health Manag. 2020, 22, 291–301. [Google Scholar] [CrossRef]
- Kelfve, S.; Agahi, N.; Mattsson, A.D.; Lennartsson, C. Increased alcohol use over the past 20 years among the oldest old in Sweden. Nord. Stud. Alcohol Drugs 2014, 31, 245–260. [Google Scholar] [CrossRef]
- Breslow, R.A.; Castle, I.-J.P.; Chen, C.M.; Graubard, B.I. Trends in Alcohol Consumption Among Older Americans: National Health Interview Surveys, 1997 to 2014. Alcohol. Clin. Exp. Res. 2017, 41, 976–986. [Google Scholar] [CrossRef]
- Wilsnack, R.W.; Wilsnack, S.C.; Kristjanson, A.F.; Vogeltanz-Holm, N.D.; Gmel, G. Gender and alcohol consumption: Patterns from the multinational GENACIS project. Addiction 2009, 104, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.E.; Vaughan, R.D.; Foster, W.H.; Califano, J.A., Jr. Alcohol consumption and expenditures for underage drinking and adult excessive drinking. JAMA 2003, 289, 989–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.; Olanrewaju, O.; Cowan, A.; Brayne, C.; Lafortune, L. Alcohol and older people: A systematic review of barriers, facilitators and context of drinking in older people and implications for intervention design. PLoS ONE 2018, 13, e0191189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderbruggen, N.; Matthys, F.; Van Laere, S.; Zeeuws, D.; Santermans, L.; Van Den Ameele, S.; Crunelle, C.L. Self-Reported Alcohol, Tobacco, and Cannabis Use during COVID-19 Lockdown Measures: Results from a Web-Based Survey. Eur. Addict. Res. 2020, 26, 309–315. [Google Scholar] [CrossRef]
- Rossow, I.; Træen, B. Alcohol use among older adults: A comparative study across four European countries. Nord. Stud. Alcohol Drugs 2020, 37, 526–543. [Google Scholar] [CrossRef]
- Moos, R.H.; Schutte, K.K.; Brennan, P.L.; Moos, B.S. Older adults’ alcohol consumption and late-life drinking problems: A 20-year perspective. Addiction 2009, 104, 1293–1302. [Google Scholar] [CrossRef] [Green Version]
- Steffen, J.; Schlichtiger, J.; Huber, B.C.; Brunner, S. Altered alcohol consumption during COVID-19 pandemic lockdown. Nutr. J. 2021, 20, 44. [Google Scholar] [CrossRef]
- Meier, P.S.; Holmes, J.; Brennan, A.; Angus, C. Alcohol policy and gender: A modelling study estimating gender-specific effects of alcohol pricing policies. Addiction 2021, 116, 2372–2384. [Google Scholar] [CrossRef]
- Iwamoto, D.K.; Smiler, A.P. Alcohol Makes You Macho and Helps You Make Friends: The Role of Masculine Norms and Peer Pressure in Adolescent Boys’ and Girls’ Alcohol Use. Subst. Use Misuse 2013, 48, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Heckley, G.; Jarl, J.; Gerdtham, U.-G. Frequency and intensity of alcohol consumption: New evidence from Sweden. Eur. J. Health Econ. 2016, 18, 495–517. [Google Scholar] [CrossRef] [Green Version]
- Hayes, S.W.; Priestley, J.L.; Ishmakhametov, N.; Ray, H.E. “I’m Not Working from Home, I’m Living at Work”: Perceived Stress and Work-Related Burnout before and during COVID-19. Available online: https://psyarxiv.com/vnkwa/ (accessed on 30 January 2022).
- Abugu, J.O.; Ozo, J.U.; Olugbenga, T.G. Assessment of Determinants of Beer Brand Loyalty Building in Nigeria and Challenge. Management 2018, 7, 47–59. [Google Scholar] [CrossRef]
- Xu, X.; Chaloupka, F.J. The Effects of Prices on Alcohol Use and its Consequences. Alcohol Res. Health J. Natl. Inst. Alcohol Abus. Alcohol. 2011, 34, 236–245. [Google Scholar]
- Keyes, K.M.; Hatzenbuehler, M.L.; Grant, B.F.; Hasin, D.S. Stress and Alcohol. Alcohol Res. 2012, 34, 391–400. [Google Scholar]
- Balogun, O.; Koyanagi, A.; Stickley, A.; Gilmour, S.; Shibuya, K. Alcohol Consumption and Psychological Distress in Adolescents: A Multi-Country Study. J. Adolesc. Health 2014, 54, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W.; Kanteres, F.; Rehm, J. Alcoholic Beverage Strength Discrimination by Taste May Have an Upper Threshold. Alcohol. Clin. Exp. Res. 2014, 38, 2460–2467. [Google Scholar] [CrossRef]
- Lerro, M.; Marotta, G.; Nazzaro, C. Measuring consumers’ preferences for craft beer attributes through Best-Worst Scaling. Agric. Food Econ. 2020, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.J.; Bakke, A.J.; Hayes, J.E. Personality traits and bitterness perception influence the liking and intake of pale ale style beers. Food Qual. Prefer. 2020, 86, 103994. [Google Scholar] [CrossRef]
- Salanță, L.; Coldea, T.; Ignat, M.; Pop, C.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Zhao, H. Functionality of Special Beer Processes and Potential Health Benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Marketresearch.com. Available online: https://www.marketresearch.com/Williams-Marshall-Strategy-v4196/Philippines-Beer-Impact-COVID-Medium-13626355/ (accessed on 6 March 2022).
- Gabrielyan, G.; Marsh, T.L.; McCluskey, J.J.; Ross, C.F. Hoppiness Is Happiness? Under-fertilized Hop Treatments and Consumers’ Willingness to Pay for Beer. J. Wine Econ. 2018, 13, 160–181. [Google Scholar] [CrossRef]
- Royle, L.; Ames, J.M.; A Hill, C.; Gardner, D.S. Analysis of hop acids by capillary electrophoresis. Food Chem. 2001, 74, 225–231. [Google Scholar] [CrossRef]
- Melis, M.; Barbarossa, I.T. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil. Nutrients 2017, 9, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dotson, C.D.; Babich, J.; Steinle, N.I. Genetic Predisposition and Taste Preference: Impact on Food Intake and Risk of Chronic Disease. Curr. Nutr. Rep. 2012, 1, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Habschied, K.; Košir, I.J.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer Polyphenols—Bitterness, Astringency, and Off-Flavors. Beverages 2021, 7, 38. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.; Wanikawa, A.; Kono, A.K.; Shibata, K. Comparison of the Odor-Active Compounds in Unhopped Beer and Beers Hopped with Different Hop Varieties. J. Agric. Food Chem. 2006, 54, 8855–8861. [Google Scholar] [CrossRef]
- Spence, C. Leading the consumer by the nose: On the commercialization of olfactory design for the food and beverage sector. Flavour 2015, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Standard Terminology Relating to Sensory Evaluations of Materials and Products ASTM International. 2009. Available online: https://www.astm.org/Standards/E253.htm (accessed on 1 October 2021).
- Fox, D.; Sahin, A.W.; De Schutter, D.P.; Arendt, E.K. Mouthfeel of Beer: Development of Tribology Method and Correlation with Sensory Data from an Online Database. J. Am. Soc. Brew. Chem. 2021, 80, 112–127. [Google Scholar] [CrossRef]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, M.; E Hayes, J. Regional Variation of Bitter Taste and Aftertaste in Humans. Chem. Senses 2019, 44, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, N.; Inui, T.; Nakahara, K.; Fukami, H. Beer Aftertaste Improved by Reducing Astringent Substances in the Barley Malt with Subcritical Water Treatment. J. Am. Soc. Brew. Chem. 2013, 71, 105–108. [Google Scholar] [CrossRef]
- Sugrue, M.; Dando, R. Cross-modal influence of colour from product and packaging alters perceived flavour of cider. J. Inst. Brew. 2018, 124, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, H.; Hidrio, C.; Yeomans, M.R. A taste of things to come: The effect of extrinsic and intrinsic cues on perceived properties of beer mediated by expectations. Food Qual. Prefer. 2021, 94, 104326. [Google Scholar] [CrossRef]
- Reinoso-Carvalho, F.; Dakduk, S.; Wagemans, J.; Spence, C. Dark vs. light drinks: The influence of visual appearance on the consumer’s experience of beer. Food Qual. Prefer. 2019, 74, 21–29. [Google Scholar] [CrossRef]
- Carvalho, F.R.; Moors, P.; Wagemans, J.; Spence, C. The Influence of Color on the Consumer’s Experience of Beer. Front. Psychol. 2017, 8, 2205. [Google Scholar] [CrossRef]
- Gislason, S.; Bruhn, S.; Christensen, A.; Christensen, M.; Hansen, M.; Kha, T.; Giacalone, D. The Influence of Bottle Design on Perceived Quality of Beer: A Conjoint Analytic Study. Beverages 2020, 6, 64. [Google Scholar] [CrossRef]
- Lee, K.; Yoo, J. How does open innovation lead competitive advantage? A dynamic capability view perspective. PLoS ONE 2019, 14, e0223405. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.; Ramirez, D.Z.M.; Bhatnagar, T.; Oldfrey, B.; Morjaria, P.; Moulic, S.G.; Ebuenyi, I.D.; Barbareschi, G.; Meeks, F.; Massie, J.; et al. A review of innovation strategies and processes to improve access to AT: Looking ahead to open innovation ecosystems. Assist. Technol. 2021, 33, 68–86. [Google Scholar] [CrossRef]
- Bogers, M.; Chesbrough, H.; Heaton, S.; Teece, D.J. Strategic Management of Open Innovation: A Dynamic Capabilities Perspective. Calif. Manag. Rev. 2019, 62, 77–94. [Google Scholar] [CrossRef]
- Lu, Q.; Chesbrough, H. Measuring open innovation practices through topic modelling: Revisiting their impact on firm financial performance. Technovation 2021, 114, 102434. [Google Scholar] [CrossRef]
- Belitski, M.; Rejeb, N. Does open customer innovation model hold for family firms? J. Bus. Res. 2022, 145, 334–346. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kaur, P.; Talwar, S.; Islam, N.; Dhir, A. Way off the mark? Open innovation failures: Decoding what really matters to chart the future course of action. J. Bus. Res. 2022, 142, 1010–1025. [Google Scholar] [CrossRef]
- Naqshbandi, M.M.; Jasimuddin, S.M. The linkage between open innovation, absorptive capacity and managerial ties: A cross-country perspective. J. Innov. Knowl. 2022, 7, 100167. [Google Scholar] [CrossRef]
- Tomita, K. Open innovation and drug discovery startups in Japan: The importance of communication in licensing. Asia Pac. Manag. Rev. 2022. [Google Scholar] [CrossRef]
- Xiaoguang, Z. Incorporation of Sticky Information and product diversification into static game of Open Innovation. Int. J. Innov. Stud. 2022, 6, 11–25. [Google Scholar]
- Seo, R.; Park, J.-H. When is interorganizational learning beneficial for inbound open innovation of ventures? A contingent role of entrepreneurial orientation. Technovation 2022, 116, 102514. [Google Scholar] [CrossRef]
- Kimpimäki, J.-P.; Malacina, I.; Lähdeaho, O. Open and sustainable: An emerging frontier in innovation management? Technol. Forecast. Soc. Chang. 2022, 174, 121229. [Google Scholar] [CrossRef]
- Bašić, M. Organisational learning antecedents and open innovation: Differences in internationalisation level. Int. J. Innov. Stud. 2021, 5, 161–174. [Google Scholar] [CrossRef]
- Saura, J.R.; Palacios-Marqués, D.; Ribeiro-Soriano, D. Exploring the boundaries of open innovation: Evidence from social media mining. Technovation 2022, 102447. [Google Scholar] [CrossRef]
- Mastrocinque, E.; Lamberti, E.; Ramirez, F.J.; Petrovic, D. Measuring open innovation under uncertainty: A fuzzy logic approach. J. Eng. Technol. Manag. 2022, 63, 101673. [Google Scholar] [CrossRef]
- Sanni, M.; Verdolini, E. Eco-innovation and openness: Mapping the growth trajectories and the knowledge structure of open eco-innovation. Sustain. Futur. 2022, 4, 100067. [Google Scholar] [CrossRef]
- Shin, H.; Perdue, R.R. Developing creative service ideas through hotel customer engagement for open innovation: Focused on empowerment and motivation processes. Int. J. Hosp. Manag. 2021, 100, 103077. [Google Scholar] [CrossRef]
- Audretsch, B.D.; Belitski, M. The limits to open innovation and its impact on innovation performance. Technovation 2022, 102519. [Google Scholar] [CrossRef]
- Shaikh, I.; Randhawa, K. Managing the risks and motivations of technology managers in open innovation: Bringing stakeholder-centric corporate governance into focus. Technovation 2022, 114, 102439. [Google Scholar] [CrossRef]
- Cavallo, A.; Burgers, H.; Ghezzi, A.; van de Vrande, V. The evolving nature of open innovation governance: A study of a digital platform development in collaboration with a big science centre. Technovation 2021, 102370. [Google Scholar] [CrossRef]
- Misra, A.; Mention, A.-L. Exploring the food value chain using open innovation: A bibliometric review of the literature. Br. Food J. 2021, 124, 1810–1837. [Google Scholar] [CrossRef]
- Ihle, R.; Rubin, O.D.; Bar-Nahum, Z.; Jongeneel, R. Imperfect food markets in times of crisis: Economic consequences of supply chain disruptions and fragmentation for local market power and urban vulnerability. Food Secur. 2020, 12, 727–734. [Google Scholar] [CrossRef]
- Martinez, M.G. Open Innovation in the Food and Beverage Industry; Woodhead Publishing: Oxford, UK, 2016. [Google Scholar]
- Yun, J.H.J.; Park, K.B.; Gaudio, G.D.; Corte, V.D. Open innovation ecosystems of restaurants: Geographical economics of successful restaurants from three cities. Eur. Plan. Stud. 2020, 28, 2348–2367. [Google Scholar] [CrossRef]
Attribute | Attribute Level |
---|---|
Color | Blonde |
Amber | |
Primary taste | Full/bitter |
Sweet | |
Aftertaste | Bitter |
Crisp/almost none | |
Aroma | Malty |
Fruity | |
Mouthfeel | Astringent/dry |
Smooth | |
Alcohol level | <4.9 (low) |
4.9–5.4 (moderate) | |
>5.4 (high) | |
Price of 330 mL bottle | PHP 41–60 |
PHP 61–80 | |
PHP 81–100 |
Beer Number | Color | Primary Taste | Aftertaste | Aroma | Mouthfeel | Alcohol | Price |
---|---|---|---|---|---|---|---|
B1 | Blond | Sweet | Bitter | Malty | Astringent | Low | 81–100 |
B2 | Amber | Full | Bitter | Fruity | Smooth | Low | 41–60 |
B3 | Amber | Sweet | Crisp | Malty | Astringent | Low | 41–60 |
B4 | Amber | Full | Crisp | Malty | Astringent | Low | 61–80 |
B5 | Blond | Full | Bitter | Malty | Astringent | Low | 41–60 |
B6 | Blond | Full | Crisp | Malty | Smooth | High | 81–100 |
B7 | Blond | Full | Bitter | Fruity | Astringent | High | 41–60 |
B8 | Amber | Full | Bitter | Malty | Smooth | Moderate | 41–60 |
B9 | Amber | Sweet | Bitter | Fruity | Smooth | Low | 81–100 |
B10 | Blond | Sweet | Crisp | Fruity | Smooth | Low | 41–60 |
B11 | Blond | Full | Crisp | Fruity | Smooth | Low | 61–80 |
B12 | Blond | Sweet | Crisp | Malty | Smooth | Moderate | 41–60 |
B13 | Amber | Sweet | Bitter | Malty | Smooth | High | 61–80 |
B14 | Blond | Sweet | Bitter | Fruity | Astringent | Moderate | 61–80 |
B15 | Amber | Full | Crisp | Fruity | Astringent | Moderate | 81–100 |
B16 | Amber | Sweet | Crisp | Fruity | Astringent | High | 41–60 |
Characteristic | Category | Frequency | Percent |
---|---|---|---|
Age group | Baby Boomer (Birth Year: 1946–1964) | 205 | 24.0 |
Gen X (Birth Year: 1965–1976) | 203 | 23.8 | |
Millennial (Birth Year: 1977–1995) | 207 | 24.3 | |
Gen Z (Birth Year: 1996–2003) | 238 | 27.9 | |
Sex | Female | 420 | 49.2 |
Male | 433 | 50.8 | |
Individual monthly income/allowance | Less than PHP 21,914 | 355 | 41.6 |
PHP 21,914–43,828 | 208 | 24.4 | |
PHP 43,829–76,698 | 194 | 22.7 | |
>PHP 76,698 | 96 | 11.3 |
Drinking Aspect | Mean | Std. Deviation |
---|---|---|
Frequency | 3.7128 | 1.65606 |
Intake | 3.6506 | 1.65438 |
Expenses | 3.5909 | 1.74158 |
Preference | 3.1958 | 1.77499 |
Relationship | Somer’s d Value | Asymptotic Standard Error |
---|---|---|
Age and frequency | −0.367 | 0.024 |
Age and intake | −0.378 | 0.023 |
Age and expenses | −0.445 | 0.022 |
Relationship | Somer’s d | Asymptotic Standard Error |
---|---|---|
Income and frequency | 0.229 | 0.028 |
Income and intake | 0.239 | 0.028 |
Income and expenses | 0.426 | 0.025 |
Relationship | Pearson Chi-Squared Value | Cramer’s V | Strength of Association [15] |
---|---|---|---|
Sex and frequency | 105.501 | 0.352 | Very strong |
Sex and intake | 155.005 | 0.426 | Very strong |
Sex and expenses | 41.58 | 0.221 | Strong |
Utilities | |||
---|---|---|---|
Utility Estimate | Std. Error | ||
Color | Blond | 0.013 | 0.022 |
Amber | −0.013 | 0.022 | |
Primary taste | Full | −0.090 | 0.022 |
Sweet | 0.090 | 0.022 | |
Aftertaste | Bitter | −0.046 | 0.022 |
Crisp | 0.046 | 0.022 | |
Aroma | Malty | 0.038 | 0.022 |
Fruity | −0.038 | 0.022 | |
Mouthfeel | Astringent | −0.047 | 0.022 |
Smooth | 0.047 | 0.022 | |
Alcohol | Low | −0.026 | 0.029 |
Moderate | 0.083 | 0.034 | |
High | −0.057 | 0.034 | |
Price | 41–60 | 0.370 | 0.029 |
61–80 | 0.099 | 0.034 | |
81–100 | −0.469 | 0.034 | |
(Constant) | 4.068 | 0.024 |
Importance of Values | |
---|---|
Color | 1.827 |
Primary taste | 12.452 |
Aftertaste | 6.355 |
Aroma | 5.189 |
Mouthfeel | 6.445 |
Alcohol | 9.706 |
Price | 58.025 |
Beer | Utility Estimate |
---|---|
B12 | 0.687 |
B10 | 0.503 |
B8 | 0.388 |
B16 | 0.352 |
B5 | 0.213 |
B2 | 0.204 |
B3 | 0.186 |
B13 | 0.156 |
B14 | 0.155 |
B7 | 0.106 |
B11 | 0.051 |
B4 | 0.006 |
B1 | −0.447 |
B9 | −0.455 |
B6 | −0.473 |
B15 | −0.527 |
Value | Sig. | |
---|---|---|
Pearson’s r | 0.990 | 0.000 |
Kendall’s tau | 0.917 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, A.K.S.; Pequeña, A.R.; Prasetyo, Y.T.; Chuenyindee, T.; Buaphiban, T.; Persada, S.F.; Nadlifatin, R. The Evaluation of the Local Beer Industry during the COVID-19 Pandemic and Its Relationship with Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 127. https://doi.org/10.3390/joitmc8030127
Ong AKS, Pequeña AR, Prasetyo YT, Chuenyindee T, Buaphiban T, Persada SF, Nadlifatin R. The Evaluation of the Local Beer Industry during the COVID-19 Pandemic and Its Relationship with Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity. 2022; 8(3):127. https://doi.org/10.3390/joitmc8030127
Chicago/Turabian StyleOng, Ardvin Kester S., Arianne R. Pequeña, Yogi Tri Prasetyo, Thanatorn Chuenyindee, Thapanat Buaphiban, Satria Fadil Persada, and Reny Nadlifatin. 2022. "The Evaluation of the Local Beer Industry during the COVID-19 Pandemic and Its Relationship with Open Innovation" Journal of Open Innovation: Technology, Market, and Complexity 8, no. 3: 127. https://doi.org/10.3390/joitmc8030127
APA StyleOng, A. K. S., Pequeña, A. R., Prasetyo, Y. T., Chuenyindee, T., Buaphiban, T., Persada, S. F., & Nadlifatin, R. (2022). The Evaluation of the Local Beer Industry during the COVID-19 Pandemic and Its Relationship with Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 127. https://doi.org/10.3390/joitmc8030127