Artificial Intelligence, Blockchain Technology, and Risk-Taking Behavior in the 4.0IR Metaverse Era: Evidence from Bangladesh-Based SMEs
Abstract
:1. Introduction
- a.
- What factors influence the use of blockchain for artificial intelligence in the SMEs’ sector in the 4.0IR metaverse era in Bangladesh?
- b.
- What reality affects the deployment of blockchain directly in terms of artificial intelligence in the 4.0IR metaverse era?
2. Literature Review and Hypotheses Development
2.1. Blockchain Technology and Artificial Intelligence
2.2. Knowledge
2.3. Relevant Advantage
2.4. Perceived Ease of Use
2.5. Risk-Taking Behavior
3. Methodology of the Study
3.1. Sample and Data
3.2. Measurement
3.3. Data Analysis Technique
4. Findings and Discussion
4.1. Respondents’ Profile
4.2. Measurement, Validity, and Reliability
4.3. Discriminant Validity
4.3.1. Fornell–Larcker Criterion Analysis
4.3.2. Heterotrait-Monotrait (HTMT) Analysis
1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|
1 | Adoption of Green Energy Technology | |||||
2 | Knowledge | 0.344 | ||||
3 | Perceived Ease of Use | 0.389 | 0.489 | |||
4 | Relative Advantage | 0.278 | 0.378 | 0.232 | ||
5 | Risk-Taking Behavior | 0.287 | 0.267 | 0.287 | 0.477 |
4.4. Structural Model Assessment
4.5. Hypotheses Testing (Direct and Indirect Relationships)
5. Conclusions
6. Implications of the Study
6.1. Theoretical Implications
6.2. Managerial Implications
7. Limitations and Future Directions for Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- (1)
- Employees are responsible for knowledge sharing regarding blockchain technology.
- (2)
- Employees are committed to knowledge sharing regarding blockchain technology.
- (3)
- Employees feel more belonging in the organization by knowledge sharing.
- (4)
- There are organizational technological infrastructures to facilitate the knowledge sharing regarding blockchain technology.
- Blockchain reduces overhead expenses.
- Blockchain reduces transaction costs while transferring funds.
- Blockchain saves time while accomplishing business tasks.
- Blockchain increases the organization’s overall productivity.
- It is easy to operate blockchain.
- Blockchain is simple to operate.
- It is easy to study blockchain.
- It is easy to comprehend blockchain.
- (1)
- Blockchain is not secured.
- (2)
- Blockchain may increase data error rates.
- (3)
- Their transactions’ information will be compromised while using blockchain.
- (4)
- Blockchain will not provide its expected benefits.
- (1)
- I believe our company should implement blockchain technologies in the NEAR future.
- (2)
- We are working out/already have an implementing plan with budget for blockchain technologies.
- (3)
- Blockchain Technology is a reliable way to maintain privacy of employees like me.
- (4)
- Blockchain technology will help stakeholders in browsing information specific to their requirements for taking decision-making.
References
- Singh, S.; Sharma, P.K.; Yoon, B.; Shojafar, M.; Cho, G.H.; Ra, I.H. Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustain. Cities Soc. 2020, 63, 102364. [Google Scholar] [CrossRef]
- Kusuma, I.G.A.T.; Tahu, G.P.; Widyani, A.A.D.; Langgeng, M. When A New Product Innovatıon Negatıvely Impacts Marketıng Performance. APMBA 2022, 11, 41–60. [Google Scholar]
- Novillo-Villegas, S.; Ayala-Andrade, R.; Lopez-Cox, J.P.; Salazar-Oyaneder, J.; Acosta-Vargas, P. A Roadmap for Innovation Capacity in Developing Countries. Sustainability 2022, 14, 6686. [Google Scholar] [CrossRef]
- Smith, K.; Sepasgozar, S. Governance, Standards and Regulation: What Construction and Mining Need to Commit to Industry 4.0. Buildings 2022, 12, 1064. [Google Scholar] [CrossRef]
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, F.; Xie, Y.; Fan, X.; Gu, H. The impact of artificial intelligence and blockchain on the accounting profession. IEEE Access 2020, 8, 110461–110477. [Google Scholar] [CrossRef]
- Islam, A.; Rahim, T.; Masuduzzaman, M.D.; Shin, S.Y. A blockchain-based artificial intelligence-empowered contagious pandemic situation supervision scheme using internet of drone things. IEEE Wirel. Commun. 2021, 28, 166–173. [Google Scholar] [CrossRef]
- Bosri, R.; Rahman, M.S.; Bhuiyan, M.Z.A.; Al Omar, A. Integrating blockchain with artificial intelligence for privacy-preserving recommender systems. IEEE Trans. Netw. Sci. Eng. 2020, 8, 1009–1018. [Google Scholar] [CrossRef]
- Babu, K.E.K. Artificial intelligence in Bangladesh, its applications in different sectors and relevant challenges for the government: An analysis. Int. J. Public Law Policy 2021, 7, 319–333. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- An, Y.J.; Choi, P.M.S.; Huang, S.H. Blockchain, Cryptocurrency, and Artificial Intelligence in Finance. In Fintech with Artificial Intelligence, Big Data, and Blockchain; Springer: Singapore, 2021; pp. 1–34. [Google Scholar]
- Yang, H.; Fan, Y.; Liu, R. Disease Information Dissemination Prevention and Risk Management Methods in the Blockchain Environment. Math. Probl. Eng. 2022, 2022, 7617055. [Google Scholar] [CrossRef]
- Markopoulos, E.; Kirane, I.S.; Balaj, D.; Vanharanta, H. Artificial intelligence and blockchain technology adaptation for human resources democratic ergonomization on team management. In International Conference on Human Systems Engineering and Design: Future Trends and Applications; Springer: Cham, Switzerland, 2019; pp. 445–455. [Google Scholar]
- Luo, S.; Choi, T.M. Great partners: How deep learning and blockchain help improve business operations together. Ann. Oper. Res. 2021, 1–26. [Google Scholar] [CrossRef]
- Jakšič, M.; Marinč, M. Relationship banking and information technology: The role of artificial intelligence and FinTech. Risk Manag. 2019, 21, 1–18. [Google Scholar] [CrossRef]
- Abbasi, G.A.; Tiew, L.Y.; Tang, J.; Goh, Y.N.; Thurasamy, R. The adoption of cryptocurrency as a disruptive force: Deep learning-based dual stage structural equation modelling and artificial neural network analysis. PLoS ONE 2021, 16, e0247582. [Google Scholar] [CrossRef]
- Meghani, K. Use of Artificial Intelligence and Blockchain in Banking Sector: A Study of Scheduled Commercial Banks in India. Meghani Indian J. Appl. Res. 2020, 10. [Google Scholar] [CrossRef]
- Fusco, A.; Dicuonzo, G.; Dell’Atti, V.; Tatullo, M. Blockchain in healthcare: Insights on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7167. [Google Scholar] [CrossRef]
- Gao, W.; Su, C. Analysis on block chain financial transaction under artificial neural network of deep learning. J. Comput. Appl. Math. 2020, 380, 112991. [Google Scholar] [CrossRef]
- Wong, L.-W.; Tan, G.W.-H.; Ooi, K.-B.; Lin, B.; Dwivedi, Y.K. Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis. Int. J. Prod. Res. 2022, 1–21. [Google Scholar] [CrossRef]
- Deebak, B.D.; Fadi, A.T. Privacy-preserving in smart contracts using blockchain and artificial intelligence for cyber risk measurements. J. Inf. Secur. Appl. 2021, 58, 102749. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Chowdhury, S.; Beltagui, A.; Albores, P. The potential of emergent disruptive technologies for humanitarian supply chains: The integration of blockchain, Artificial Intelligence and 3D printing. Int. J. Prod. Res. 2020, 58, 4610–4630. [Google Scholar] [CrossRef]
- Chang, V.; Baudier, P.; Zhang, H.; Xu, Q.; Zhang, J.; Arami, M. How Blockchain can impact financial services–The overview, challenges and recommendations from expert interviewees. Technol. Forecast. Soc. Chang. 2020, 158, 120166. [Google Scholar] [CrossRef] [PubMed]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2018, 57, 2179–2202. [Google Scholar] [CrossRef]
- Calvaresi, D.; Mattioli, V.; Dubovitskaya, A.; Dragoni, A.F.; Schumacher, M. Reputation management in multi-agent systems using permissioned blockchain technology. In Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, Chile, 3–6 December 2018; pp. 719–725. [Google Scholar]
- Krittanawong, C.; Rogers, A.J.; Aydar, M.; Choi, E.; Johnson, K.W.; Wang, Z.; Narayan, S.M. Integrating blockchain technology with artificial intelligence for cardiovascular medicine. Nat. Rev. Cardiol. 2020, 17, 1–3. [Google Scholar] [CrossRef]
- Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; et al. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665–5690. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, N.; Borbon-Galvez, Y.; Strozzi, F.; Etemadi, T. Supply chain disruption risk management with blockchain: A dynamic literature review. Information 2021, 12, 70. [Google Scholar] [CrossRef]
- Jabarulla, M.Y.; Lee, H.-N. A Blockchain and Artificial Intelligence-Based, Patient-Centric Healthcare System for Combating the COVID-19 Pandemic: Opportunities and Applications. Healthcare 2021, 9, 1019. [Google Scholar] [CrossRef]
- Bublitz, F.M.; Oetomo, A.; Sahu, K.S.; Kuang, A.; Fadrique, L.X.; Velmovitsky, P.E.; Morita, P. Disruptive technologies for environment and health research: An overview of artificial intelligence, blockchain, and internet of things. Int. J. Environ. Res. Public Health 2019, 16, 3847. [Google Scholar] [CrossRef]
- AlShamsi, M.; Salloum, S.A.; Alshurideh, M.; Abdallah, S. Artificial intelligence and blockchain for transparency in governance. In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications; Springer: Cham, Switzerland, 2021; pp. 219–230. [Google Scholar]
- Faella, G.; Romano, V.C. Artificial intelligence and blockchain: An introduction to competition issues. Compet. Law Policy Debate 2019, 5, 19–25. [Google Scholar] [CrossRef]
- Di Vaio, A.; Hassan, R.; Alavoine, C. Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technol. Forecast. Soc. Chang. 2021, 174, 121201. [Google Scholar] [CrossRef]
- Nuryyev, G.; Wang, Y.-P.; Achyldurdyyeva, J.; Jaw, B.-S.; Yeh, Y.-S.; Lin, H.-T.; Wu, L.-F. Blockchain Technology Adoption Behavior and Sustainability of the Business in Tourism and Hospitality SMEs: An Empirical Study. Sustainability 2020, 12, 1256. [Google Scholar] [CrossRef]
- Bracci, E.; Tallaki, M.; Ievoli, R.; Diplotti, S. Knowledge, diffusion and interest in blockchain technology in SMEs. J. Knowl. Manag. 2021, 26, 1386–1407. [Google Scholar] [CrossRef]
- Sciarelli, M.; Prisco, A.; Gheith, M.H.; Muto, V. Factors affecting the adoption of blockchain technology in innovative Italian companies: An extended TAM approach. J. Strat. Manag. 2021, 15, 495–507. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet Things 2020, 11, 100227. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.; Lu, J.; Cheng, X. Business Innovation based on artificial intelligence and Blockchain technology. Inf. Process. Manag. 2021, 59, 102759. [Google Scholar] [CrossRef]
- Chattu, V.K. A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data Cogn. Comput. 2021, 5, 41. [Google Scholar]
- Qasim, A.; Kharbat, F.F. Blockchain technology, business data analytics, and artificial intelligence: Use in the accounting profession and ideas for inclusion into the accounting curriculum. J. Emerg. Technol. Account. 2020, 17, 107–117. [Google Scholar] [CrossRef]
- Pablo, R.G.J.; Roberto, D.P.; Victor, S.U.; Isabel, G.R.; Paul, C.; Elizabeth, O.R. Big data in the healthcare system: A synergy with artificial intelligence and blockchain technology. J. Integr. Bioinform. 2022, 19. [Google Scholar] [CrossRef]
- Tagde, P.; Tagde, S.; Bhattacharya, T.; Tagde, P.; Chopra, H.; Akter, R.; Rahman, M. Blockchain and artificial intelligence technology in e-Health. Environ. Sci. Pollut. Res. 2021, 28, 52810–52831. [Google Scholar] [CrossRef]
- Fenwick, M.; Vermeulen, E.P. Technology and corporate governance: Blockchain, crypto, and artificial intelligence. Tex. J. Bus. Law 2019, 48, 1. [Google Scholar] [CrossRef]
- Singh, S.K.; Rathore, S.; Park, J.H. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Gener. Comput. Syst. 2020, 110, 721–743. [Google Scholar] [CrossRef]
- Imron, M.A.; Munawaroh, U.I.; Farida, R.D.M.; Paramarta, V.; Sunarsi, D.; Akbar, I.R.; Masriah, I. Effect of organizational culture on innovation capability employees in the knowledge sharing perspective: Evidence from digital industries. Ann. Rom. Soc. Cell Biol. 2021, 25, 4189–4203. [Google Scholar]
- Grover, P.; Kar, A.K.; Dwivedi, Y.K. Understanding artificial intelligence adoption in operations management: Insights from the review of academic literature and social media discussions. Ann. Oper. Res. 2020, 308, 177–213. [Google Scholar] [CrossRef]
- Ducrée, J. Research–A blockchain of knowledge? Blockchain Res. Appl. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Connelly, C.E.; Kelloway, E.K. Predictors of employees’ perceptions of knowledge sharing cultures. Leadersh. Organ. Dev. J. 2003, 24, 294–301. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, W. An integrated theoretical model for determinants of knowledge sharing behaviours. Kybernetes 2012, 41, 1462–1482. [Google Scholar] [CrossRef]
- Akram, S.V.; Malik, P.K.; Singh, R.; Anita, G.; Tanwar, S. Adoption of blockchain technology in various realms: Opportunities and challenges. Secur. Priv. 2020, 3, e109. [Google Scholar] [CrossRef]
- Hijazeen, O.W.; Fadiya, S.O.; Akkaya, M.; Sari, A. Secure Fuzzy Logic to Study the Impact of Knowledge Management Enablers on Organizational Performance through Decision Making Mediator. Int. J. Appl. Eng. Res. 2018, 13, 16860–16877. [Google Scholar]
- Chen, X.; Chua, A.Y.K.; Pee, L.G. Who sells knowledge online? An exploratory study of knowledge celebrities in China. Internet Res. 2022, 32, 916–942. [Google Scholar] [CrossRef]
- Usmanova, K.; Wang, D.; Sumarliah, E.; Mousa, K.; Maiga, S.S. China’s halal food industry: The link between knowledge management capacity, supply chain practices, and company performance. Interdiscip. J. Inf. Knowl. Manag. 2021, 16, 285. [Google Scholar] [CrossRef]
- Mathivathanan, D.; Mathiyazhagan, K.; Rana, N.P.; Khorana, S.; Dwivedi, Y.K. Barriers to the adoption of blockchain technology in business supply chains: A total interpretive structural modelling (TISM) approach. Int. J. Prod. Res. 2021, 59, 3338–3359. [Google Scholar] [CrossRef]
- Kopyto, M.; Lechler, S.; von der Gracht, H.A.; Hartmann, E. Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel. Technol. Forecast. Soc. Chang. 2020, 161, 120330. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Moghaddam, S.G.; Manshadi, S.D. Blockchain-enabled pharmaceutical cold chain: Applications, key challenges, and future trends. J. Clean. Prod. 2021, 302, 127021. [Google Scholar] [CrossRef]
- Philsoophian, M.; Akhavan, P.; Namvar, M. The mediating role of blockchain technology in improvement of knowledge sharing for supply chain management. Manag. Decis. 2021, 60, 784–805. [Google Scholar] [CrossRef]
- Ruangkanjanases, A.; Hariguna, T.; Adiandari, A.M.; Alfawaz, K.M. Assessing Blockchain Adoption in Supply Chain Management, Antecedent of Technology Readiness, Knowledge Sharing and Trading Need. Emerg. Sci. J. 2022, 6, 921–937. [Google Scholar] [CrossRef]
- Pop, C.D.; Antal, M.; Cioara, T.; Anghel, I.; Salomie, I. Blockchain and Demand Response: Zero-Knowledge Proofs for Energy Transactions Privacy. Sensors 2020, 20, 5678. [Google Scholar] [CrossRef] [PubMed]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
- Toufaily, E.; Zalan, T.; Dhaou, S.B. A framework of blockchain technology adoption: An investigation of challenges and expected value. Inf. Manag. 2021, 58, 103444. [Google Scholar] [CrossRef]
- Rainero, C.; Modarelli, G. Food tracking and blockchain-induced knowledge: A corporate social responsibility tool for sustainable decision-making. Br. Food J. 2021, 123, 4284–4308. [Google Scholar] [CrossRef]
- Ku-Mahamud, K.R.; Omar, M.; Bakar, N.A.A.; Muraina, I.D. Awareness, trust, and adoption of blockchain technology and cryptocurrency among blockchain communities in Malaysia. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 1217–1222. [Google Scholar] [CrossRef]
- Schuetz, S.; Venkatesh, V. Blockchain, adoption, and financial inclusion in India: Research opportunities. Int. J. Inf. Manag. 2020, 52, 101936. [Google Scholar] [CrossRef]
- Zareravasan, A.; Krčál, M.; Ashrafi, A. The Implications of Blockchain for Knowledge Sharing. In Proceedings of the International Forum on Knowledge Asset Dynamics (IFKAD 2020), Matera, Italy, 9–11 September 2020. [Google Scholar]
- Maier, R.; Hadrich, T. Knowledge management systems. In Encyclopedia of Knowledge Management, 2nd ed.; IGI Global: Hershey, PA, USA, 2011; pp. 779–790. [Google Scholar]
- Roman-Belmonte, J.M.; De la Corte-Rodriguez, H.; Rodriguez-Merchan, E.C. How blockchain technology can change medicine. Postgrad. Med. 2018, 130, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Maesa, D.D.F.; Mori, P. Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [Google Scholar] [CrossRef]
- Valeri, M.; Baggio, R. A critical reflection on the adoption of blockchain in tourism. Inf. Technol. Tour. 2020, 23, 121–132. [Google Scholar] [CrossRef]
- Lu, L.; Liang, C.; Gu, D.; Ma, Y.; Xie, Y.; Zhao, S. What advantages of blockchain affect its adoption in the elderly care industry? A study based on the technology–organisation–environment framework. Technol. Soc. 2021, 67, 101786. [Google Scholar] [CrossRef]
- Wong, L.-W.; Leong, L.-Y.; Hew, J.-J.; Tan, G.W.-H.; Ooi, K.-B. Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. Int. J. Inf. Manag. 2019, 52, 101997. [Google Scholar] [CrossRef]
- Sheel, A.; Nath, V. Effect of blockchain technology adoption on supply chain adaptability, agility, alignment and performance. Manag. Res. Rev. 2019, 42, 1353–1374. [Google Scholar] [CrossRef]
- Liang, T.P.; Kohli, R.; Huang, H.C.; Li, Z.L. What drives the adoption of the blockchain technology? A fit-viability perspective. J. Manag. Inf. Syst. 2021, 38, 314–337. [Google Scholar] [CrossRef]
- Kant, N. Blockchain: A strategic resource to attain and sustain competitive advantage. Int. J. Innov. Sci. 2021, 13, 520–538. [Google Scholar] [CrossRef]
- Mahajan, A.; Issa, T. Australian Users’ Perspective of Green Blockchain Technology Adoption in Businesses. In Sustainability Awareness and Green Information Technologies; Springer: Cham, Switzerland, 2020; pp. 375–408. [Google Scholar]
- Kim, J.S.; Shin, N. The impact of blockchain technology application on supply chain partnership and performance. Sustainability 2019, 11, 6181. [Google Scholar] [CrossRef]
- Berneis, M.; Bartsch, D.; Winkler, H. Applications of Blockchain Technology in Logistics and Supply Chain Management—Insights from a Systematic Literature Review. Logistics 2021, 5, 43. [Google Scholar] [CrossRef]
- Papathanasiou, A.; Cole, R.; Murray, P. The (non-) application of blockchain technology in the Greek shipping industry. Eur. Manag. J. 2020, 38, 927–938. [Google Scholar] [CrossRef]
- Clohessy, T.; Acton, T.; Rogers, N. Blockchain adoption: Technological, organisational and environmental considerations. In Business Transformation Through Blockchain; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 47–76. [Google Scholar]
- Rashideh, W. Blockchain technology framework: Current and future perspectives for the tourism industry. Tour. Manag. 2020, 80, 104125. [Google Scholar] [CrossRef]
- Cole, R.; Stevenson, M.; Aitken, J. Blockchain technology: Implications for operations and supply chain management. Supply Chain. Manag. 2019, 24, 469–483. [Google Scholar] [CrossRef]
- Zheng, X.R.; Lu, Y. Blockchain technology—Recent research and future trend. Enterp. Inf. Syst. 2021, 1–23. [Google Scholar] [CrossRef]
- Ziakis, C. Blockchain and Artificial Intelligence in Real Estate. In International Conference on Decision Support System Technology; Springer: Cham, Switzerland, 2022; pp. 44–54. [Google Scholar]
- Lyu, W.; Liu, J. Artificial Intelligence and emerging digital technologies in the energy sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Yan, J.; Hu, G.; Shi, Y. Processes, benefits, and challenges for adoption of blockchain technologies in food supply chains: A thematic analysis. Inf. Syst. E-Bus. Manag. 2020, 19, 909–935. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Delgado, J.M.D.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Ali, O.; Jaradat, A.; Kulakli, A.; Abuhalimeh, A. A Comparative Study: Blockchain Technology Utilization Benefits, Challenges and Functionalities. IEEE Access 2021, 9, 12730–12749. [Google Scholar] [CrossRef]
- Zemánková, A. Artificial intelligence and blockchain in audit and accounting: Literature review. WSEAS Trans. Bus. Econ. 2019, 16, 568–581. [Google Scholar]
- Dzhaparov, P. Application of blockchain and artificial intelligence in bank risk management. Икoнoмика Управление 2020, 17, 43–57. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A model of the antecedents of perceived ease of use: Development and test. Decis. Sci. 1996, 27, 451–481. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P. Causal relationships between perceived enjoyment and perceived ease of use: An alternative approach. J. Assoc. Inf. Syst. 2006, 7, 24. [Google Scholar] [CrossRef]
- Grover, P.; Kar, A.K.; Janssen, M.; Ilavarasan, P.V. Perceived usefulness, ease of use and user acceptance of blockchain technology for digital transactions—Insights from user-generated content on Twitter. Enterp. Inf. Syst. 2019, 13, 771–800. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Arha, H. Understanding the Blockchain technology adoption in supply chains-Indian context. Int. J. Prod. Res. 2019, 57, 2009–2033. [Google Scholar] [CrossRef]
- Rijanto, A. Blockchain technology adoption in supply chain finance. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3078–3098. [Google Scholar] [CrossRef]
- Ullah, N.; Alnumay, W.S.; Al-Rahmi, W.M.; Alzahrani, A.I.; Al-Samarraie, H. Modeling Cost Saving and Innovativeness for Blockchain Technology Adoption by Energy Management. Energies 2020, 13, 4783. [Google Scholar] [CrossRef]
- Wahyuni, A.E.; Juraida, A.; Anwar, A. Readiness factor identification Bandung city MSMEs use blockchain technology. J. Sist. Manaj. Ind. 2021, 5, 53–62. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Belhadi, A.; Foropon, C. A machine learning based approach for predicting blockchain adoption in supply Chain. Technol. Forecast. Soc. Chang. 2020, 163, 120465. [Google Scholar] [CrossRef]
- Gao, S.; Li, Y. An empirical study on the adoption of blockchain-based games from users’ perspectives. Electron. Libr. 2021, 39, 596–614. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, M.; Upreti, K.; Mohan, D. Blockchain Adoption Intention in Higher Education: Role of Trust, Perceived Security and Privacy in Technology Adoption Model. In Proceedings of the International Conference on Emerging Technologies and Intelligent Systems, Al Buraimi, Oman, 25–26 June 2021; Springer: Cham, Switzerland, 2021; pp. 303–313. [Google Scholar]
- Eze, N.U.; Obichukwu, P.U.; Kesharwani, S. Perceived usefulness, perceived ease of use in ICT support and use for teachers. IETE J. Educ. 2021, 62, 12–20. [Google Scholar] [CrossRef]
- Kabir, M.R.; Islam, M.A. Behavioural intention to adopt blockchain technology in Bangladeshi banking companies. AIP Conf. Proc. 2021, 2347, 020025. [Google Scholar]
- Liu, N.; Ye, Z. Empirical research on the blockchain adoption—Based on TAM. Appl. Econ. 2021, 53, 4263–4275. [Google Scholar] [CrossRef]
- Li, X.; Lai, P.-L.; Yang, C.-C.; Yuen, K.F. Determinants of blockchain adoption in the aviation industry: Empirical evidence from Korea. J. Air Transp. Manag. 2021, 97, 102139. [Google Scholar] [CrossRef]
- Albayati, H.; Kim, S.K.; Rho, J.J. Accepting financial transactions using blockchain technology and cryptocurrency: A customer perspective approach. Technol. Soc. 2020, 62, 101320. [Google Scholar] [CrossRef]
- Ghode, D.; Yadav, V.; Jain, R.; Soni, G. Adoption of blockchain in supply chain: An analysis of influencing factors. J. Enterp. Inf. Manag. 2020, 33, 437–456. [Google Scholar] [CrossRef]
- Rauniyar, K.; Wu, X.; Gupta, S.; Modgil, S.; Jabbour, A.B.L.D.S. Risk management of supply chains in the digital transformation era: Contribution and challenges of blockchain technology. Ind. Manag. Data Syst. 2022, 4, 0235. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.-W.; Tan, G.W.-H.; Lee, V.-H.; Ooi, K.-B.; Sohal, A. Unearthing the determinants of Blockchain adoption in supply chain management. Int. J. Prod. Res. 2020, 58, 2100–2123. [Google Scholar] [CrossRef]
- Bayramova, A.; Edwards, D.J.; Roberts, C. The Role of Blockchain Technology in Augmenting Supply Chain Resilience to Cybercrime. Buildings 2021, 11, 283. [Google Scholar] [CrossRef]
- Bogucharskov, A.V.; Pokamestov, I.E.; Adamova, K.R.; Tropina, Z.N. Adoption of Blockchain Technology in Trade Finance Process. J. Rev. Glob. Econ. 2018, 7, 510–515. [Google Scholar] [CrossRef]
- Kramer, M.P.; Bitsch, L.; Hanf, J.H. The impact of instrumental stakeholder management on blockchain technology adoption behavior in agri-food supply chains. J. Risk Financ. Manag. 2021, 14, 598. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Wamba, S.F.; De Bourmont, M.; Telles, R. Blockchain adoption in operations and supply chain management: Empirical evidence from an emerging economy. Int. J. Prod. Res. 2021, 59, 6087–6103. [Google Scholar] [CrossRef]
- Choi, D.; Chung, C.Y.; Seyha, T.; Young, J. Factors affecting organizations’ resistance to the adoption of blockchain technology in supply networks. Sustainability 2020, 12, 8882. [Google Scholar] [CrossRef]
- Prewett, K.W.; Prescott, G.L.; Phillips, K. Blockchain adoption is inevitable—Barriers and risks remain. J. Corp. Account. Financ. 2019, 31, 21–28. [Google Scholar] [CrossRef]
- Cowden, B.; Tang, J. Institutional entrepreneurial orientation: Beyond setting the rules of the game for blockchain technology. Technol. Forecast. Soc. Chang. 2022, 180, 121734. [Google Scholar] [CrossRef]
- Saurabh, S.; Dey, K. Blockchain technology adoption, architecture, and sustainable agri-food supply chains. J. Clean. Prod. 2020, 284, 124731. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Kadilar, C.; Cingi, H. A New Ratio Estimator in Stratified Random Sampling. Commun. Stat. Theory Methods 2005, 34, 597–602. [Google Scholar] [CrossRef]
- Brislin, R.W. Back-translation for cross-cultural research. J. Cross-Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 2018, 117, 408–425. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Overton, T.S. Estimating nonresponse bias in mail surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef]
- Classen, N.; Van Gils, A.; Bammens, Y.; Carree, M. Accessing Resources from Innovation Partners: The Search Breadth of Family SMEs. J. Small Bus. Manag. 2012, 50, 191–215. [Google Scholar] [CrossRef]
- Campanella, F.; Serino, L. Do personal characteristics of manager a_ect Smes’ Access to Bank Loan? Int. J. Econ. Bus. Financ. 2019, 6, 1–14. [Google Scholar]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Chang. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Polas, M.R.H.; Saha, R.K.; Ahamed, B. Leveraging green IoT and blockchain technology in the era of transformative digitalization: A green energy usage perspective. In Handbook of Research on Social Impacts of E-Payment and Blockchain Technology; IGI Global: Hershey, PA, USA, 2022; pp. 115–135. [Google Scholar]
- Malik, S.; Chadhar, M.; Vatanasakdakul, S.; Chetty, M. Factors affecting the organizational adoption of blockchain technology: Extending the technology–organization–environment (TOE) framework in the Australian context. Sustainability 2021, 13, 9404. [Google Scholar] [CrossRef]
- Hamdan, I.K.A.; Aziguli, W.; Zhang, D.; Sumarliah, E.; Usmanova, K. Forecasting blockchain adoption in supply chains based on machine learning: Evidence from Palestinian food SMEs. Br. Food J. 2022. [Google Scholar] [CrossRef]
- Kano, T.; Sheikh, A.M.; Toyama, K. IT Career aspirations in Bangladesh: A Trigger for development? Inf. Technol. Dev. 2021, 27, 336–360. [Google Scholar] [CrossRef]
- Sroufe, R.; Gopalakrishna-Remani, V. Management, social sustainability, reputation, and financial performance relationships: An empirical examination of US firms. Organ. Environ. 2019, 32, 331–362. [Google Scholar] [CrossRef]
- Vinzi, V.E.; Trinchera, L.; Amato, S. PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–82. [Google Scholar]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Cohen, N.J.; Squire, L.R. Preserved Learning and Retention of Pattern-Analyzing Skill in Amnesia: Dissociation of Knowing How and Knowing That. Science 1980, 210, 207–210. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Gold, A.H.; Malhotra, A.; Segars, A.H. Knowledge Management: An Organizational Capabilities Perspective. J. Manag. Inf. Syst. 2001, 18, 185–214. [Google Scholar] [CrossRef]
- Bickel, P.J.; Götze, F.; van Zwet, W.R. Resampling fewer than n observations: Gains, losses, and remedies for losses. In Selected Works of Willem van Zwet; Springer: New York, NY, USA, 2012; pp. 267–297. [Google Scholar]
- Boukis, A. Exploring the implications of blockchain technology for brand–consumer relationships: A future research agenda. J. Prod. Brand Manag. 2019, 29, 307–320. [Google Scholar] [CrossRef]
- Wamba, S.F.; Queiroz, M.M.; Trinchera, L. Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. Int. J. Prod. Econ. 2020, 229, 107791. [Google Scholar] [CrossRef]
- Ullah, N.; Mugahed Al-Rahmi, W.; Alzahrani, A.I.; Alfarraj, O.; Alblehai, F.M. Blockchain Technology Adoption in Smart Learning Environments. Sustainability 2021, 13, 1801. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Wamba, S.F. Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. Int. J. Inf. Manag. 2018, 46, 70–82. [Google Scholar] [CrossRef]
- Cao, D.; Tao, H.; Wang, Y.; Tarhini, A.; Xia, S. Acceptance of automation manufacturing technology in China: An examination of perceived norm and organizational efficacy. Prod. Plan. Control. 2020, 31, 660–672. [Google Scholar] [CrossRef]
- Maroun, E.A.; Daniel, J.; Zowghi, D.; Talaei-Khoei, A. Blockchain in Supply Chain Management: Australian Manufacturer Case Study. In Service Research and Innovation; Springer: Cham, Switzerland, 2018; pp. 93–107. [Google Scholar]
- Oliveira, T.; Thomas, M.; Baptista, G.; Campos, F. Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Comput. Hum. Behav. 2016, 61, 404–414. [Google Scholar] [CrossRef]
- Tian, F. An agri-food supply chain traceability system for China based on RFID & blockchain technology. In Proceedings of the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016; pp. 1–6. [Google Scholar]
- Apte, S.; Petrovsky, N. Will blockchain technology revolutionize excipient supply chain management? J. Excip. Food Chem. 2016, 7, 910. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Dobrovnik, M.; Herold, D.M.; Fürst, E.; Kummer, S. Blockchain for and in Logistics: What to Adopt and Where to Start. Logistics 2018, 2, 18. [Google Scholar] [CrossRef]
- Hastig, G.M.; Sodhi, M.S. Blockchain for supply chain traceability: Business requirements and critical success factors. Prod. Oper. Manag. 2020, 29, 935–954. [Google Scholar] [CrossRef]
- Di Vaio, A.; Varriale, L. Blockchain technology in supply chain management for sustainable performance: Evidence from the airport industry. Int. J. Inf. Manag. 2020, 52, 102014. [Google Scholar] [CrossRef]
- Moin, S.; Karim, A.; Safdar, Z.; Safdar, K.; Ahmed, E.; Imran, M. Securing IoTs in distributed blockchain: Analysis, requirements and open issues. Future Gener. Comput. Syst. 2019, 100, 325–343. [Google Scholar] [CrossRef]
- Leng, J.; Jiang, P.; Xu, K.; Liu, Q.; Zhao, J.L.; Bian, Y.; Shi, R. Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing. J. Clean. Prod. 2019, 234, 767–778. [Google Scholar] [CrossRef]
- Allen, D.W.; Berg, C.; Davidson, S.; Novak, M. Potts, J. International policy coordination for blockchain supply chains. Asia Pac. Policy Stud. 2019, 6, 367–380. [Google Scholar] [CrossRef]
- Filimonau, V.; Naumova, E. The blockchain technology and the scope of its application in hospitality operations. Int. J. Hosp. Manag. 2020, 87, 102383. [Google Scholar] [CrossRef]
- Torky, M.; Hassanein, A.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Ølnes, S.; Ubacht, J.; Janssen, M. Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Gov. Inf. Q. 2017, 34, 355–364. [Google Scholar] [CrossRef]
- Risius, M.; Spohrer, K. A blockchain research framework. Bus. Inf. Syst. Eng. 2017, 59, 385–409. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef]
- Hayes, A.F. Mediation, moderation, and conditional process analysis. In Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach Edn; Guilford Publications: New York, NY, USA, 2013; Volume 1, p. 20. [Google Scholar]
- Alazab, M.; Alhyari, S.; Awajan, A.; Abdallah, A.B. Blockchain technology in supply chain management: An empirical study of the factors affecting user adoption/acceptance. Clust. Comput. 2021, 24, 83–101. [Google Scholar] [CrossRef]
- Dutta, P.; Choi, T.M.; Somani, S.; Butala, R. Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102067. [Google Scholar] [CrossRef] [PubMed]
- Lohmer, J.; Bugert, N.; Lasch, R. Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study. Int. J. Prod. Econ. 2020, 228, 107882. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.E.; Chen, Y. When blockchain meets supply chain: A systematic literature review on current development and potential applications. IEEE Access. 2020, 8, 62478–62494. [Google Scholar] [CrossRef]
- Koh, L.; Dolgui, A.; Sarkis, J. Blockchain in transport and logistics–paradigms and transitions. Int. J. Prod. Res. 2020, 58, 2054–2062. [Google Scholar] [CrossRef]
- De Giovanni, P. Blockchain and smart contracts in supply chain management: A game theoretic model. Int. J. Prod. Econ. 2020, 228, 107855. [Google Scholar] [CrossRef]
- Lim, M.K.; Li, Y.; Wang, C.; Tseng, M.L. A literature review of blockchain technology applications in supply chains: A comprehensive analysis of themes, methodologies and industries. Comput. Ind. Eng. 2021, 154, 107133. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Razzaq, A.; Yu, Z.; Miller, S. Industry 4.0 and circular economy practices: A new era business strategies for environmental sustainability. Bus. Strategy Environ. 2021, 30, 4001–4014. [Google Scholar] [CrossRef]
- Hughes, L.; Dwivedi, Y.K.; Misra, S.K.; Rana, N.P.; Raghavan, V.; Akella, V. Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. Int. J. Inf. Manag. 2019, 49, 114–129. [Google Scholar] [CrossRef]
- Behnke, K.; Janssen, M.F.W.H.A. Boundary conditions for traceability in food supply chains using blockchain technology. Int. J. Inf. Manag. 2020, 52, 101969. [Google Scholar] [CrossRef]
- Dolgui, A.; Ivanov, D.; Potryasaev, S.; Sokolov, B.; Ivanova, M.; Werner, F. Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain. Int. J. Prod. Res. 2020, 58, 2184–2199. [Google Scholar] [CrossRef]
- Paliwal, V.; Chandra, S.; Sharma, S. Blockchain technology for sustainable supply chain management: A systematic literature review and a classification framework. Sustainability 2020, 12, 7638. [Google Scholar] [CrossRef]
- Bodkhe, U.; Tanwar, S.; Parekh, K.; Khanpara, P.; Tyagi, S.; Kumar, N.; Alazab, M. Blockchain for industry 4.0: A comprehensive review. IEEE Access. 2020, 8, 79764–79800. [Google Scholar] [CrossRef]
- Frizzo-Barker, J.; Chow-White, P.A.; Adams, P.R.; Mentanko, J.; Ha, D.; Green, S. Blockchain as a disruptive technology for business: A systematic review. Int. J. Inf. Manag. 2020, 51, 102029. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Bryde, D.J.; Dwivedi, Y.K.; Papadopoulos, T. Blockchain technology for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting. Int. J. Prod. Res. 2020, 58, 3381–3398. [Google Scholar] [CrossRef]
- Kurpjuweit, S.; Schmidt, C.G.; Klöckner, M.; Wagner, S.M. Blockchain in additive manufacturing and its impact on supply chains. J. Bus. Logist. 2021, 42, 46–70. [Google Scholar] [CrossRef]
- Choi, T.M.; Ouyang, X. Initial coin offerings for blockchain based product provenance authentication platforms. Int. J. Prod. Econ. 2021, 233, 107995. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, F.; Gu, Y. A Stackelberg game based two-stage framework to make decisions of freight rate for container shipping lines in the emerging blockchain-based market. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102303. [Google Scholar] [CrossRef]
- Raja Santhi, A.; Muthuswamy, P. Influence of blockchain technology in manufacturing supply chain and logistics. Logistics 2022, 6, 15. [Google Scholar] [CrossRef]
Characteristics | Frequency | Percentage | Characteristics | Frequency | Percentage |
---|---|---|---|---|---|
Gender | Working Experience | ||||
Male | 111 | 74 | Less than 5 Years | 81 | 54 |
Female | 39 | 26 | 5–9 Years | 55 | 36.67 |
Age | 10–13 Years | 12 | 8 | ||
30 Years or below | 9 | 6 | 14 Years or above | 2 | 1 |
31–35 Years | 33 | 22 | |||
36–40 Years | 61 | 40.67 | Firm Age | ||
41–45 Years | 44 | 29 | Less than 5 Years | 45 | 30 |
46 Years or above | 3 | 2 | 6–8 Years | 60 | 40 |
Marital Status | 9–11 Years | 35 | 23 | ||
Single | 22 | 14.67 | 12–14 Years | 5 | 3 |
Married | 123 | 82 | 15 Years or above | 5 | 3 |
Divorced | 5 | 3 | Monthly Income (USD) | ||
Education Level | Below 500 | 75 | 50 | ||
Diploma | 13 | 8.67 | 501–1000 | 45 | 30 |
Under Graduate | 75 | 50 | 1001–1500 | 8 | 5 |
Post Graduate | 60 | 40 | 1501–2000 | 15 | 10 |
Others | 2 | 1 | 2001 or above | 7 | 4.67 |
Total–150 |
Constructs | Items | Loading | AVE | CR | Alpha | R-Square | NFI | SRMR |
---|---|---|---|---|---|---|---|---|
Knowledge | Employees are responsible for knowledge sharing regarding blockchain technology (K1). | 0.847 | ||||||
Employees are committed to knowledge sharing regarding blockchain technology (K2). | 0.847 | 0.720 | 0.911 | 0.871 | ||||
Employees feel more belonging in the organization by knowledge sharing (K3). | 0.859 | |||||||
There are organizational technological infrastructures to facilitate knowledge sharing regarding blockchain technology (K4). | 0.841 | |||||||
Relative Advantage | Blockchain reduces overhead expenses (RA1). | 0.916 | ||||||
Blockchain reduces transaction costs while transferring funds (RA2). | 0.770 | 0.759 | 0.926 | 0.893 | ||||
Blockchain saves time while accomplishing business tasks (RA3). | 0.885 | |||||||
Blockchain increases the organization’s overall productivity (RA4). | 0.905 | |||||||
Perceived Ease of Use | It is easy to operate blockchain (PEU1). | 0.906 | ||||||
Blockchain is simple to operate (PEU2). | 0.803 | 0.704 | 0.904 | 0.858 | ||||
It is easy to study blockchain (PEU3). | 0.863 | |||||||
It is easy to comprehend blockchain (PEU4). | 0.777 | |||||||
Risk-Taking Behavior | Blockchain is not secured (RTB1). | 0.918 | ||||||
Blockchain may increase data error rates (RTB2). | 0.826 | 0.777 | 0.933 | 0.904 | 0.872 | |||
Their transactions’ information will be compromised while using blockchain (RTB3). | 0.908 | |||||||
Blockchain will not provide its expected benefits (RTB4). | 0.871 | |||||||
ABT | I believe our company should implement blockchain technologies in the NEAR future (ABT1). | 0.895 | ||||||
We are working out/already have an implementing plan with budget for blockchain technologies (ABT2). | 0.951 | 0.76 | 0.926 | 0.893 | 0.920 | 0.07 | 0.910 | |
Blockchain Technology is a reliable way to maintain privacy of employees like me (ABT3). | 0.778 | |||||||
Blockchain technology will help stakeholders in browsing information specific to their requirements for taking decision-making (ABT4). | 0.852 |
Variables | Q2 | ABT (f2) | Risk-Taking Behavior (f2) |
---|---|---|---|
Adoption of Green Energy Technology | 0.594 | ||
Knowledge | 0.522 | 0.026 | 0.369 |
Perceived Ease of Use | 0.501 | 0.105 | 0.088 |
Relative Advantage | 0.591 | 0.261 | 0.089 |
Risk-Taking Behavior | 0.617 | 0.056 |
1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|
1 | Adoption of Green Energy Technology | 0.872 | ||||
2 | Knowledge | 0.719 | 0.849 | |||
3 | Perceived Ease of Use | 0.723 | 0.613 | 0.839 | ||
4 | Relative Advantage | 0.736 | 0.603 | 0.509 | 0.871 | |
5 | Risk-Taking Behavior | 0.609 | 0.623 | 0.581 | 0.693 | 0.882 |
Hypotheses | Relationship | Std Beta | Std Error | t-Value | p-Value | Decision |
---|---|---|---|---|---|---|
H1 | Knowledge → Adoption of Blockchain Technology | 0.15 | 0.074 | 1.991 | 0.047 | Supported |
H2 | Relative Advantage → Adoption of Blockchain Technology | 0.41 | 0.07 | 5.729 | 0 | Supported |
H3 | Perceived Ease of Use → Adoption of Blockchain Technology | 0.255 | 0.071 | 3.621 | 0 | Supported |
Hypotheses | Relationship | Path Coefficient | t-Value | p-Value | LLCI | ULCI | Decision |
---|---|---|---|---|---|---|---|
H4 | Relative Advantage → Risk-Taking Behavior → ABT | 0.106 | 2.251 | 0.025 | 0.1507 | 0.3105 | Supported |
H5 | Relative Advantage → Risk-Taking Behavior → ABT | 0.051 | 1.715 | 0.087 | 0.1319 | 0.2794 | Rejected |
H6 | Knowledge → Risk-Taking Behavior → ABT | 0.016 | 0.807 | 0.421 | 0.1467 | 0.2345 | Rejected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polas, M.R.H.; Afshar Jahanshahi, A.; Kabir, A.I.; Sohel-Uz-Zaman, A.S.M.; Osman, A.R.; Karim, R. Artificial Intelligence, Blockchain Technology, and Risk-Taking Behavior in the 4.0IR Metaverse Era: Evidence from Bangladesh-Based SMEs. J. Open Innov. Technol. Mark. Complex. 2022, 8, 168. https://doi.org/10.3390/joitmc8030168
Polas MRH, Afshar Jahanshahi A, Kabir AI, Sohel-Uz-Zaman ASM, Osman AR, Karim R. Artificial Intelligence, Blockchain Technology, and Risk-Taking Behavior in the 4.0IR Metaverse Era: Evidence from Bangladesh-Based SMEs. Journal of Open Innovation: Technology, Market, and Complexity. 2022; 8(3):168. https://doi.org/10.3390/joitmc8030168
Chicago/Turabian StylePolas, Mohammad Rashed Hasan, Asghar Afshar Jahanshahi, Ahmed Imran Kabir, Abu Saleh Md. Sohel-Uz-Zaman, Abu Rashed Osman, and Ridoan Karim. 2022. "Artificial Intelligence, Blockchain Technology, and Risk-Taking Behavior in the 4.0IR Metaverse Era: Evidence from Bangladesh-Based SMEs" Journal of Open Innovation: Technology, Market, and Complexity 8, no. 3: 168. https://doi.org/10.3390/joitmc8030168
APA StylePolas, M. R. H., Afshar Jahanshahi, A., Kabir, A. I., Sohel-Uz-Zaman, A. S. M., Osman, A. R., & Karim, R. (2022). Artificial Intelligence, Blockchain Technology, and Risk-Taking Behavior in the 4.0IR Metaverse Era: Evidence from Bangladesh-Based SMEs. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 168. https://doi.org/10.3390/joitmc8030168