Can Magnesium Enhance Exercise Performance?
Abstract
:1. Introduction
2. The Association between Mg and Exercise Performance
2.1. Evidence from Animal Studies
2.2. Evidence from Human Studies
3. Possible Mechanism
4. Potential Confounders and Methodological Issues
5. Summary and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bohl, C.H.; Volpe, S.L. Magnesium and exercise. Crit. Rev. Food Sci. Nutr. 2002, 42, 533–563. [Google Scholar] [CrossRef] [PubMed]
- George, G.A.; Heaton, F.W. Effect of magnesium deficiency on energy metabolism and protein synthesis by liver. Int. J. Biochem. 1978, 9, 421–425. [Google Scholar] [CrossRef]
- Littlefield, N.A.; Hass, B.S.; McGarrity, L.J.; Morris, S.M. Effect of magnesium on the growth and cell cycle of transformed and non-transformed epithelial rat liver cells in vitro. Cell Biol. Toxicol. 1991, 7, 203–214. [Google Scholar] [PubMed]
- Garfinkel, L.; Garfinkel, D. Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 1985, 4, 60–72. [Google Scholar] [PubMed]
- Dorup, I.; Clausen, T. Effects of magnesium and zinc deficiencies on growth and protein synthesis in skeletal muscle and the heart. Br. J. Nutr. 1991, 66, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Mildvan, A.S. Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium 1987, 6, 28–33. [Google Scholar] [PubMed]
- Mert, T.; Gunes, Y.; Guven, M.; Gunay, I.; Ozcengiz, D. Effects of calcium and magnesium on peripheral nerve conduction. Pol. J. Pharmacol. 2003, 55, 25–30. [Google Scholar] [PubMed]
- Potter, J.D.; Robertson, S.P.; Johnson, J.D. Magnesium and the regulation of muscle contraction. Fed. Proc. 1981, 40, 2653–2656. [Google Scholar] [PubMed]
- Newhouse, I.J.; Finstad, E.W. The effects of magnesium supplementation on exercise performance. Clin. J. Sport Med. 2000, 10, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C. Magnesium, zinc, and chromium nutrition and athletic performance. Can. J. Appl. Physiol. 2001, 26, S13–S22. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H.; Lukaski, H.C. Update on the relationship between magnesium and exercise. Magnes. Res. 2006, 19, 180–189. [Google Scholar] [PubMed]
- Laires, M.J.; Monteiro, C.P.; Matias, C.N.; Santos, D.A.; Silva, A.M.; Bicho, M. Magnesium status and exercise performance in athletes. Trace Elem. Electroly 2014, 31, 13–20. [Google Scholar]
- Rayssiguier, Y.; Guezennec, C.Y.; Durlach, J. New experimental and clinical data on the relationship between magnesium and sport. Magnes. Res. 1990, 3, 93–102. [Google Scholar] [PubMed]
- Garrison, S.R.; Allan, G.M.; Sekhon, R.K.; Musini, V.M.; Khan, K.M. Magnesium for skeletal muscle cramps. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Barbagallo, M.; Lauretani, F.; Bandinelli, S.; Bos, A.; Corsi, A.M.; Simonsick, E.M.; Ferrucci, L. Magnesium and muscle performance in older persons: the InCHIANTI study. Am. J. Clin. Nutr. 2006, 84, 419–426. [Google Scholar] [PubMed]
- Santos, D.A.; Matias, C.N.; Monteiro, C.P.; Silva, A.M.; Rocha, P.M.; Minderico, C.S.; Bettencourt Sardinha, L.; Laires, M.J. Magnesium intake is associated with strength performance in elite basketball, handball and volleyball players. Magnes. Res. 2011, 24, 215–219. [Google Scholar] [PubMed]
- Matias, C.N.; Santos, D.A.; Monteiro, C.P.; Silva, A.M.; Raposo Mde, F.; Martins, F.; Sardinha, L.B.; Bicho, M.; Laires, M.J. Magnesium and strength in elite judo athletes according to intracellular water changes. Magnes. Res. 2010, 23, 138–141. [Google Scholar] [PubMed]
- Cheng, S.M.; Yang, L.L.; Chen, S.H.; Hsu, M.H.; Chen, I.J.; Cheng, F.C. Magnesium sulfate enhances exercise performance and manipulates dynamic changes in peripheral glucose utilization. Eur. J. Appl. Physiol. 2010, 108, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.L.; Lowney, P.; Gershwin, M.E.; Hurley, L.S.; Stern, J.S. Dietary magnesium intake influences exercise capacity and hematologic parameters in rats. Metabolism 1987, 36, 788–793. [Google Scholar] [CrossRef]
- Liu, L.; Borowski, G.; Rose, L.I. Hypomagnesemia in a Tennis Player. Phys. Sportsmed. 1983, 11, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Magnesium-Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/ (accessed on 18 August 2017).
- Volpe, S.L. Magnesium and the Athlete. Curr. Sport Med. Rep. 2015, 14, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Brilla, L.R.; Haley, T.F. Effect of Magnesium Supplementation on Strength Training in Humans. J. Am. Coll. Nutr. 1992, 11, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C. Vitamin and mineral status: effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Finstad, E.W.; Newhouse, I.J.; Lukaski, H.C.; McAuliffe, J.E.; Stewart, C.R. The effects of magnesium supplementation on exercise performance. Med. Sci. Sports Exerc. 2001, 33, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Cheng, F.C.; Pan, H.C.; Hsu, J.C.; Wang, M.F. Magnesium Enhances Exercise Performance via Increasing Glucose Availability in the Blood, Muscle, and Brain during Exercise. PLoS ONE 2014, 9, e85486. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chen, H.Y.; Wang, M.F.; Hsu, M.H.; Liang, W.M.; Cheng, F.C. Effects of magnesium on exercise performance and plasma glucose and lactate concentrations in rats using a novel blood-sampling technique. Appl. Physiol. Nutr. Metab. 2009, 34, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Kass, L.S.; Skinner, P.; Poeira, F. A pilot study on the effects of magnesium supplementation with high and low habitual dietary magnesium intake on resting and recovery from aerobic and resistance exercise and systolic blood pressure. J. Sports Sci. Med. 2013, 12, 144–150. [Google Scholar] [PubMed]
- Setaro, L.; Santos-Silva, P.R.; Nakano, E.Y.; Sales, C.H.; Nunes, N.; Greve, J.M.; Colli, C. Magnesium status and the physical performance of volleyball players: effects of magnesium supplementation. J. Sport Sci. 2014, 32, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Substrate utilization during exercise in active people. Am. J. Clin. Nutr. 1995, 61 (Suppl. S4), 968S–979S. [Google Scholar] [PubMed]
- Miller, B.F.; Fattor, J.A.; Jacobs, K.A.; Horning, M.A.; Navazio, F.; Lindinger, M.I.; Brooks, G.A. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J. Physiol. 2002, 544 Pt 3, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.M.; Yang, D.Y.; Lee, C.P.; Pan, H.C.; Lin, M.T.; Chen, S.H.; Cheng, F.C. Effects of magnesium sulfate on dynamic changes of brain glucose and its metabolites during a short-term forced swimming in gerbils. Eur. J. Appl. Physiol. 2007, 99, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.J.; Cheng, S.M. Effects of magnesium sulfate on dynamic changes in blood glucose levels and glucose transporter-3 expression in the Striatum during short-term forced swimming in Gerbils. Int. J. Sport Exerc. Sci. 2010, 1, 19–26. [Google Scholar]
- Wang, M.L.; Chen, Y.J.; Cheng, F.C. Nigari (deep seawater concentrate) enhances the treadmill exercise performance of gerbils. Biol. Sport 2014, 31, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Ahlborg, G.; Wahren, J. Brain substrate utilization during prolonged exercise. Scand. J. Clin. Lab. Investig. 1972, 29, 397–402. [Google Scholar] [CrossRef]
- Kass, L.S.; Poeira, F. The effect of acute vs chronic magnesium supplementation on exercise and recovery on resistance exercise, blood pressure and total peripheral resistance on normotensive adults. J. Int. Soc. Sports Nutr. 2015, 12, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peveler, W.W.; Palmer, T.G. Effect of magnesium lactate dihydrate and calcium lactate monohydrate on 20-km cycling time trial performance. J. Strength Cond. Res. 2012, 26, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Cinar, V.; Nizamlioglu, M.; Mogulkoc, R.; Baltaci, A.K. Effects of magnesium supplementation on blood parameters of athletes at rest and after exercise. Biol. Trace Elem. Res. 2007, 115, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Nielsen, F.H. Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J. Nutr. 2002, 132, 930–935. [Google Scholar] [PubMed]
- Cinar, V.; Nizamlioglu, M.; Mogulkoc, R. The effect of magnesium supplementation on lactate levels of sportsmen and sedanter. Acta Physiol. Hung. 2006, 93, 137–144. [Google Scholar] [PubMed]
- Veronese, N.; Berton, L.; Carraro, S.; Bolzetta, F.; De Rui, M.; Perissinotto, E.; Toffanello, E.D.; Bano, G.; Pizzato, S.; Miotto, F.; et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am. J. Clin. Nutr. 2014, 100, 974–981. [Google Scholar] [CrossRef]
- Terblanche, S.; Noakes, T.D.; Dennis, S.C.; Marais, D.; Eckert, M. Failure of magnesium supplementation to influence marathon running performance or recovery in magnesium-replete subjects. Int. J. Sport Nutr. 1992, 2, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, N.; Vafa, M.; Sarrafzadeh, J.; Rahimi-Foroushani, A. Does magnesium supplementation improve body composition and muscle strength in middle-aged overweight women? A double-blind, placebo-controlled, randomized clinical trial. Biol. Trace Elem. Res. 2013, 153, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Golf, S.W.; Bender, S.; Gruttner, J. On the significance of magnesium in extreme physical stress. Cardiovasc Drugs Ther 1998, 12 (Suppl. S2), 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, M. Hepatic glucose production during exercise. Adv. Exp. Med. Biol. 1998, 441, 117–127. [Google Scholar] [PubMed]
- Barbagallo, M.; Dominguez, L.J. Magnesium and type 2 diabetes. World J. Diabetes 2015, 6, 1152–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 2004, 27, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Cinar, V.; Polat, Y.; Mogulkoc, R.; Nizamlioglu, M.; Baltaci, A.K. The effect of magnesium supplementation on glucose and insulin levels of tae-kwan-do sportsmen and sedentary subjects. Pak. J. Pharm. Sci. 2008, 21, 237–240. [Google Scholar] [PubMed]
- Choi, I.Y.; Seaquist, E.R.; Gruetter, R. Effect of hypoglycemia on brain glycogen metabolism in vivo. J. Neurosci. Res. 2003, 72, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. Lactate shuttles in nature. Biochem. Soc. Trans. 2002, 30, 258–264. [Google Scholar] [CrossRef] [PubMed]
Food Item | Amount for One Serving | Magnesium, mg/Serving |
---|---|---|
Almonds, dry roasted | 1 oz | 80 |
Spinach, boiled | ½ cup | 78 |
Cashews, dry roasted | 1 oz | 74 |
Soy milk, plain or vanilla | 1 cup | 61 |
Black beans, cooked | ½ cup | 60 |
Edamame, shelled, cooked | ½ cup | 50 |
Peanut butter, smooth | 2 tbsp | 49 |
Bread, whole wheat | 2 slices | 46 |
Avocado, cubed | 1 cup | 44 |
Potato, baked with skin | 3.5 oz | 43 |
Rice, brown, cooked | ½ cup | 42 |
Yogurt, plain, low fat | 8 oz | 42 |
Oatmeal, instant | 1 packet | 36 |
Kidney beans, canned | ½ cup | 35 |
Banana | 1 medium | 32 |
Salmon, Atlantic, farmed, cooked | 3 oz | 26 |
Milk | 1 cup | 24–27 |
Chicken breast, roasted | 3 oz | 22 |
Beef, ground, 90% lean, pan boiled | 3 oz | 20 |
Broccoli, chopped and cooked | ½ cup | 12 |
Apple | 1 medium | 9 |
Source | Subject | Treatment Group | Control Group | Main Results |
---|---|---|---|---|
Cheng et al. [32], 2007 | Gerbils | 90 mg kg−1 Mg Sulfate, intraperitoneal injection | 90 mg kg−1 Saline solution, intraperitoneal injection | ↑ cerebral glucose and pyruvate ↓ cerebral lactate formation |
Chen et al. [27], 2009 | Sprague-Dawley Rats | 90 mg kg−1 Mg Sulfate, intraperitoneal injection | 90 mg kg−1 Saline solution, intraperitoneal injection | ↓ retention frequencies in treadmill exercise (only in the high-speed group) ↑ higher plasma glucose post exercise ↓ lower plasma lactate post exercise |
Cheng et al. [18], 2010 | Gerbils | 90 mg kg−1 Mg Sulfate, intraperitoneal injection | 90 mg kg−1 Saline solution, intraperitoneal injection | ↑ duration of swimming ↑ plasma magnesium ↑ plasma glucose ↓ plasma lactate formation |
Chen et al. [33], 2010 | Gerbils | 90 mg kg−1 Mg Sulfate, intraperitoneal injection | 90 mg kg−1 Saline solution, intraperitoneal injection | ↑ plasma glucose ↓ plasma lactate formation |
Wang et al. [34], 2014 | Gerbils | Nigari 18 mg·kg−1, orally | double-distilled water | ↓ retention frequencies in treadmill exercise |
Chen et al. [26], 2014 | Sprague-Dawley Rats | 90 mg kg−1 Mg Sulfate, intraperitoneal injection | 90 mg kg−1 Saline solution, intraperitoneal injection | ↑ glucose in blood, muscle and brain ↓ lactate formation in blood and muscle ↑ lactate formation in brain |
Source | Study Design | Group | Treatment | No. of Participants | Age, year | Male, % | Main Findings |
---|---|---|---|---|---|---|---|
Santos et al. [16] (2011, Portugal) | Cross-sectional, seven-day diet record | Male athletes | NA | 26 | 20.1 ± 4.9 | 100 | Positive association between Mg intake and strength performance |
Matias et al. [17] (2010, Portugal) | Cross-sectional, one month | Male athletes | NA | 20 | 22.9 ± 2.9 | 100 | Mg supplementation can attenuate the strength reduction due to decreased ICW |
Dominguez et al. [15] (2006, Italy) | Cross-sectional analysis of the baseline data from a prospective cohort study | Elderly | NA | 1138 | 66.7 ± 15.2 | 46 | Serum Mg level is positively associated with muscle performance in elderly |
Kass and Poeira [36] (2015, UK) | Randomized, double-blind, cross-over, placebo controlled | T1 | 300 mg/day for 1 week (acute) | 6 | 35.8 ± 6.2 | 50 | Short-term supplementation was associated with better exercise performance |
T2 | 300 mg/day for 4 weeks (chronic) | 7 | 40.8 ± 4.4 | 57 | |||
Veronese et al. [41] (2014, Italy) | RCT | T | 300 mg/day for 12 weeks | 53 | 71.8 ± 5.0 | 0 | Daily magnesium oxide supplementation improves physical performance in healthy elderly women |
C | Blank control without treatment | 71 | 71.3 ± 5.4 | 0 | |||
Moslehi et al. [43] (2013, Iran) | RCT | T | 250 mg/day for 8 weeks | 35 | 46.5 ± 3.8 | 0 | Supplementation has no significant impact on muscle strength gain |
C | Placebo | 34 | 46.1 ± 4.6 | 0 | |||
Ternlanche et al. [42] (1992, South Africa) | RCT | T | 122.6 mg/day for 10 weeks | 10 | 32.4 ± 11.5 | NA | Supplementation did not improve exercise performance. It also did not improve muscle recovery |
C | Placebo | 10 | 32.5 ± 7.7 | NA | |||
Brilla and Haley [23] (1992, USA) | RCT | T | Mg intake 8 mg/kg body weight per day | 12 | NA | NA | Supplementation led to greater quadriceps torque |
C | Placebo | 14 | NA | NA |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xun, P.; Wang, R.; Mao, L.; He, K. Can Magnesium Enhance Exercise Performance? Nutrients 2017, 9, 946. https://doi.org/10.3390/nu9090946
Zhang Y, Xun P, Wang R, Mao L, He K. Can Magnesium Enhance Exercise Performance? Nutrients. 2017; 9(9):946. https://doi.org/10.3390/nu9090946
Chicago/Turabian StyleZhang, Yijia, Pengcheng Xun, Ru Wang, Lijuan Mao, and Ka He. 2017. "Can Magnesium Enhance Exercise Performance?" Nutrients 9, no. 9: 946. https://doi.org/10.3390/nu9090946