Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects
Abstract
:1. Introduction
2. Dental Health and Foods
3. Influence of Consumption of Dairy Products and Plant-Based Alternatives on Dental Health
4. Influence of Components of Dairy Products and Plant-Based Alternatives on Dental Health
4.1. Carbohydrates
4.2. Minerals
4.3. Proteins
4.4. Trace Elements: Fluoride
5. Dairy Products and Dental Health: Food Matrix Effects
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, N.W.; Dave, A.C.; Hill, J.P.; McNabb, W.C. Nutritional Assessment of Plant-Based Beverages in Comparison to Bovine Milk. Front. Nutr. 2022, 9, 957486. [Google Scholar] [CrossRef]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O.; et al. Comparison of Nutritional Composition between Plant-Based Drinks and Cow’s Milk. Front. Nutr. 2022, 9, 2645. [Google Scholar] [CrossRef]
- Singh-Povel, C.M.; van Gool, M.P.; Gual Rojas, A.P.; Bragt, M.C.E.; Kleinnijenhuis, A.J.; Hettinga, K.A. Nutritional Content, Protein Quantity, Protein Quality and Carbon Footprint of Plant-Based Drinks and Semi-Skimmed Milk in the Netherlands and Europe. Public Health Nutr. 2022, 25, 1416–1426. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Marconi, E.; Protano, C.; Canepari, S. Comparative Elemental Analysis of Dairy Milk and Plant-Based Milk Alternatives. Food Control 2020, 116, 107327. [Google Scholar] [CrossRef]
- Boeck, T.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Nutritional Properties and Health Aspects of Pulses and Their Use in Plant-Based Yogurt Alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3858–3880. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. The Science of Plant-Based Foods: Approaches to Create Nutritious and Sustainable Plant-Based Cheese Analogs. Trends Food Sci. Technol. 2021, 118, 207–229. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; Faccia, M. Legumes as Basic Ingredients in the Production of Dairy-Free Cheese Alternatives: A Review. J. Sci. Food Agric. 2022, 102, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-Based Cheeses: A Systematic Review of Sensory Evaluation Studies and Strategies to Increase Consumer Acceptance. Foods 2021, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- McLaren, S.; Berardy, A.; Henderson, A.; Holden, N.; Huppertz, T.; Jolliet, O.; de Camillis, C.; Renouf, M.; Rugani, B.; Saarinen, M.; et al. Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges; Food and Agriculture Organization of the United Nations FAO: Rome, Italy, 2021; ISBN 978-92-5-135532-9. [Google Scholar]
- Habicht, J.-P.; Pelletier, D.L. The Importance of Context in Choosing Nutritional Indicators. J. Nutr. 1990, 120, 1519–1524. [Google Scholar] [CrossRef]
- Gustafson, D.; Gutman, A.; Leet, W.; Drewnowski, A.; Fanzo, J.; Ingram, J. Seven Food System Metrics of Sustainable Nutrition Security. Sustainability 2016, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B. An Alternative Nutrient Rich Food Index (NRF-Ai) Incorporating Prevalence of Inadequate and Excessive Nutrient Intake. Foods 2021, 10, 3156. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, K.S.; Fulgoni, V.L.; Jolliet, O. Small Targeted Dietary Changes Can Yield Substantial Gains for Human Health and the Environment. Nat. Food 2021, 2, 616–627. [Google Scholar] [CrossRef]
- Johansson, I. Milk and Dairy Products: Possible Effects on Dental Health. Scan. J. Nutr. 2002, 46, 119–122. [Google Scholar] [CrossRef]
- Herod, E.L. The Effect of Cheese on Dental Caries: A Review of the Literature. Aust. Dent. J. 1991, 36, 120–125. [Google Scholar] [CrossRef]
- Tunick, M.H.; van Hekken, D.L. Dairy Products and Health: Recent Insights. J. Agric. Food Chem. 2015, 63, 9381–9388. [Google Scholar] [CrossRef]
- Moynihan, P.; Petersen, P.E. Diet, Nutrition and the Prevention of Dental Diseases. Public Health Nutr. 2004, 7, 201–226. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A.K.; Omar, R.; Carlsson, G.E.; Johansson, A. Dental Erosion and Its Growing Importance in Clinical Practice: From Past to Present. Int. J. Dent. 2012, 2012, 632907. [Google Scholar] [CrossRef]
- Liliana, H.L.; Irina, G.; Ion, H.; Raluca, J.; Carina, B.; Adina, A.O.; Tărniceriu, C.C.; Andrei, H.A.; Maria, H.R.; Lăcrămioara, Ș.I. Correlations between Nutritional Factors and Oro-Dental Health. Rom. J. Med. Dent. Educ 2019, 8, 6–13. [Google Scholar]
- Selwitz, R.H.; Ismail, A.I.; Nigel, B. Pitts Dental Caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Lal, H.; Zohoori, F.V.; Omid, N.; Valentine, R.; Maguire, A. The Fluoride Contents of Commercially-Available Soya Milks in the UK. Br. Dent. J. 2014, 217, E8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, P.E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C. Policy and Practice The Global Burden of Oral Diseases and Risks to Oral Health. Bull. World Health Organ. 2005, 83, 661–669. [Google Scholar] [PubMed]
- Vargas-Ferreira, F.; Ardenghi, T.M. Pediatric Dentistry Paediatric Dentistry Developmental Enamel Defects and Their Impact on Child Oral Health-Related Quality of Life. Braz. Oral Res. 2011, 25, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingström, P. Impact of Food Sugars and Polysaccharides on Dental Caries; Woodhead Publishing: Sawston, UK, 2009. [Google Scholar]
- Touger-Decker, R.; van Loveren, C. Sugars and Dental Caries. Am. J. Clin. Nutr. 2003, 78, 881S–892S. [Google Scholar] [CrossRef] [Green Version]
- Moynihan, P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Adv. Nutr. 2016, 7, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.; Marshall, T.A.; Milgrom, P.; Coldwell, S.E. The Contribution of Dietary Factors to Dental Caries and Disparities in Caries. Acad. Pediatr. 2009, 9, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Bowen, W.H. Effects of Dairy Products on Oral Health. Scand. J. Nutr./Naringsforsk. 2002, 46, 178–179. [Google Scholar] [CrossRef]
- Dashper, S.G.; Saion, B.N.; Stacey, M.A.; Manton, D.J.; Cochrane, N.J.; Stanton, D.P.; Yuan, Y.; Reynolds, E.C. Acidogenic Potential of Soy and Bovine Milk Beverages. J. Dent. 2012, 40, 736–741. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef]
- Dorozhkin, S.V.; Epple, M. Biological and Medical Significance of Calcium Phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146. [Google Scholar] [CrossRef]
- Lenton, S.; Nylander, T.; Teixeira, S.C.M.; Holt, C. A Review of the Biology of Calcium Phosphate Sequestration with Special Reference to Milk. Dairy Sci. Technol. 2015, 95, 3–14. [Google Scholar] [CrossRef]
- Moss, S.J. Dental Erosion. Int. Dent. J. 1998, 48, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, Y. Clinical Investigations of the Salivary Buffering Action. Acta Odontol. Scand. 1959, 17, 131–165. [Google Scholar] [CrossRef]
- Buzalaf, M.A.R.; Hannas, A.R.; Kato, M.T. Saliva and Dental Erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardow, A.; Moe, D.; Nyvad, B.; Nauntofte, B. The Buffer Capacity and Buffer Systems of Human Whole Saliva Measured without Loss of CO2. Arch. Oral Biol. 2000, 45, 1–12. [Google Scholar] [CrossRef]
- Hamadat, S.; Slade, H.D. Biology, Immunology, and Cariogenicity of Streptococcus Mutanst. Microbiol. Rev. 1980, 44, 331–384. [Google Scholar] [CrossRef]
- Distler, W.; Kröncke, A. Acid Formation by Mixed Cultures of Cariogenic Strains of Streptococcus Mutans and Veillonella Alcalescens. Arch. Oral Biol. 1980, 25, 655–658. [Google Scholar] [CrossRef]
- Loveren, C.V. Oral and Dental Health: Prevention of Dental Caries, Erosion, Gingivitis and Periodontitis; ILSI Europe: Brussels, Belgium, 2009. [Google Scholar]
- Guo, A.; Wide, U.; Arvidsson, L.; Eiben, G.; Hakeberg, M. Dietary Intake and Meal Patterns among Young Adults with High Caries Activity: A Cross-Sectional Study. BMC Oral Health 2022, 22, 190. [Google Scholar] [CrossRef]
- Tenelanda-López, D.; Valdivia-Moral, P.; Castro-Sánchez, M. Eating Habits and Their Relationship to Oral Health. Nutrients 2020, 12, 2619. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Sugars and Dental Caries; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Gupta, P.; Gupta, N.; Pawar, A.P.; Birajdar, S.S.; Natt, A.S.; Singh, H.P. Role of Sugar and Sugar Substitutes in Dental Caries: A Review. ISRN Dent. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, P. Foods and Factors That Protect against Dental Caries. Nutr. Bull. 2000, 25, 281–286. [Google Scholar] [CrossRef]
- Chu, J.; Zhang, T.; He, K. Cariogenicity Features of Streptococcus Mutans in Presence of Rubusoside. BMC Oral Health 2016, 16, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Q.; Fu, M.; Zhou, Y.; Cao, Y.; Guo, T.; Zhou, Z.; Li, M.; Peng, X.; Zheng, X.; Li, Y.; et al. Sucrose Promotes Caries Progression by Disrupting the Microecological Balance in Oral Biofilms: An in Vitro Study. Sci. Rep. 2020, 10, 2961. [Google Scholar] [CrossRef] [Green Version]
- Leme, A.F.P.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The Role of Sucrose in Cariogenic Dental Biofilm Formation—New Insight. J. Dent. Res. 2006, 85, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Costa Oliveira, B.E.; Ricomini Filho, A.P.; Burne, R.A.; Zeng, L. The Route of Sucrose Utilization by Streptococcus Mutans Affects Intracellular Polysaccharide Metabolism. Front. Microbiol. 2021, 12, 636684. [Google Scholar] [CrossRef]
- Díaz-Garrido, N.; Lozano, C.; Giacaman, R.A. Frequency of Sucrose Exposure on the Cariogenicity of a Biofilm-Caries Model. Eur. J. Dent. 2016, 10, 345–350. [Google Scholar] [CrossRef]
- Sreshtaa, V.S.; Anjaneyulu, K. Cariostatic effect of dairy products—A review. J. Arch. Egyptol. 2020, 17, 608–617. [Google Scholar]
- Ferrazzano, G.F.; Cantile, T.; Quarto, M.; Ingenito, A.; Chianese, L.; Addeo, F. Protective Effect of Yogurt Extract on Dental Enamel Demineralization in Vitro. Aust Dent. J. 2008, 53, 314–319. [Google Scholar] [CrossRef]
- Ravishankar, T.L.; Yadav, V.; Tangade, P.S.; Tirth, A.; Chaitra, T.R. Effect of Consuming Different Dairy Products on Calcium, Phosphorus and PH Levels of Human Dental Plaque: A Comparative Study. Eur. Arch. Paediatr. Dent. 2012, 13, 144–148. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, D.; Singh, S.; Sharma, A.; Sharma, R.; Sharma, M. Milk and Its Products: Effect on Salivary PH. Int. Healthc. Res. J. 2018, 2, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.S. Milk, Flavoured Milk Products and Caries. Br. Dent. J. 2001, 191, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimutis, W.R. Bioactive Properties of Milk Proteins with Particular Focus on Anticariogenesis. J. Nutr. 2004, 134, 989S–995S. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, E.C.; Del Rio, A. Effect of Casein and Whey-Protein Solutions on Caries Experience and Feeding Patterns of the Rat. Arch. Oral Biol. 1984, 29, 927–933. [Google Scholar] [CrossRef]
- Reynolds, E.C.; Black, C.L. Reduction of Chocolate’s Cariogenicity by Supplementation with Sodium Caseinate. Caries Res. 1987, 21, 445–451. [Google Scholar] [CrossRef]
- Reynolds, E.C. Anticariogenic Complexes of Amorphous Calcium Phosphate Stabilized by Casein Phosphopeptides: A Review. Spec. Care Dent. 1998, 18, 8–16. [Google Scholar] [CrossRef]
- Reynolds, E.C. Dairy Components in Oral Health. Aust. J. Dairy Technol. 2003, 58, 79–81. [Google Scholar]
- Cross, K.J.; Huq, N.L.; Palamara, J.E.; Perich, J.W.; Reynolds, E.C. Physicochemical Characterisation of Casein Phosphopeptide-Amorphous Calcium Phosphate Nanocomplexes. J. Biol. Chem. 2005, 280, 15362–15369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reema, S.D.; Lahiri, P.K.; Roy, S.S. Review of Casein Phosphopeptides-Amorphous Calcium Phosphate. Chin. J. Dent. Res. 2014, 17, 7–14. [Google Scholar]
- Arnold, R.R.; Brewer, M.; Gauthier, J.J. Bactericidal Activity of Human Lactoferrin: Sensitivity of a Variety of Microorganisms. Infect. Immun. 1980, 28, 893–898. [Google Scholar] [CrossRef]
- Hatti, S.; Ravindra, S.; Satpathy, A.; Kulkarni, R.D.; Parande, M.V. Biofilm Inhibition and Antimicrobial Activity of a Dentifrice Containing Salivary Substitutes. Int. J. Dent. Hyg. 2007, 5, 218–224. [Google Scholar] [CrossRef]
- Tonguc-Altin, K.; Sandalli, N.; Duman, G.; Selvi-Kuvvetli, S.; Topcuoglu, N.; Kulekci, G. Development of Novel Formulations Containing Lysozyme and Lactoferrin and Evaluation of Antibacterial Effects on Mutans Streptococci and Lactobacilli. Arch. Oral Biol. 2015, 60, 706–714. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, Function, Denaturation and Digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Enax, J.; Amaechi, B.T.; Schulze zur Wiesche, E.; Meyer, F. Overview on Adjunct Ingredients Used in Hydroxyapatite-Based Oral Care Products. Biomimetics 2022, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Papas, A.S.; Joshi, A.; Belanger, A.J.; Kent, R.L.; Palmer, C.A.; DePaola, P.F. Dietary Models for Root Caries. Am. J. Clin. Nutr. 1995, 61, 417S–422S. [Google Scholar] [CrossRef]
- Tayab, T.; Rai, K.; Kumari, V.; Thomas, E. Effect of Chewing Paneer and Cheese on Salivary Acidogenicity: A Comparative Study. Int. J. Clin. Pediatr. Dent. 2012, 5, 20–24. [Google Scholar] [CrossRef]
- Abou Neel, E.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.; Bozec, L.; Mudera, V. Demineralization–Remineralization Dynamics in Teeth and Bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef]
- Denbesten, P.; Li, W. Chronic Fluoride Toxicity: Dental Fluorosis. Monogr. Oral Sci. 2011, 22, 81–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanduti, D.; Sterbenk, P.; Artnik, B. Fluoride: A Review of Use and Effects on Health. Mater. Socio Med. 2016, 28, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant. Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Townsend, J.A.; Thompson, T.; Garitty, T.; De, A.; Yu, Q.; Peters, B.M.; Wen, Z.T. Analysis of the Cariogenic Potential of Various Almond Milk Beverages Using a Streptococcus Mutans Biofilm Model in Vitro. Caries Res. 2018, 52, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Walker, G.D.; Yuan, Y.; Reynolds, C.; Stanton, D.P.; Fernando, J.R.; Reynolds, E.C. Effects of Soy and Bovine Milk Beverages on Enamel Mineral Content in a Randomized, Double-Blind in Situ Clinical Study. J. Dent. 2019, 88, 103160. [Google Scholar] [CrossRef] [PubMed]
- Sumner, O.; Burbridge, L. Plant-Based Milks: The Dental Perspective. BDJ Team. 2021, 8, 16–23. [Google Scholar] [CrossRef]
- Rugg-Gunn, A. Dental Caries: Strategies to Control This Preventable Disease. Acta Med. Acad. 2013, 42, 117–130. [Google Scholar] [CrossRef]
- Lempert, S.M.; Christensen, L.B.; Froberg, K.; Raymond, K.; Heitmann, B.L. Association between Dairy Intake and Caries among Children and Adolescents. Results from the Danish EYHS Follow-up Study. Caries Res. 2015, 49, 251–258. [Google Scholar] [CrossRef]
- Levy, S.M.; Warren, J.J.; Broffitt, B.; Hillis, S.L.; Kanellis, M.J. Fluoride, Beverages and Dental Caries in the Primary Dentition. Caries Res. 2003, 37, 157–165. [Google Scholar] [CrossRef]
- Petridou, E.; Athanassouli, T.; Panagopoulos, H.; Revinthi, K. Sociodemographic and Dietary Factors in Relation to Dental Health among Greek Adolescents. Community Dent. Oral Epidemiol. 1996, 24, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Petti, S.; Simonetti, R.; D’Arca, A.S. The Effect of Milk and Sucrose Consumption on Caries in 6-to-11-Year-Old Italian Schoolchildren. Eur. J. Epidemiol. 1997, 13, 659–664. [Google Scholar] [CrossRef]
- Johansson, I.; Lif Holgerson, P.; Kressin, N.R.; Nunn, M.E.; Tanner, A.C. Snacking Habits and Caries in Young Children. Caries Res. 2010, 44, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Moynihan, P.J.; Ferrier, S.; Jenkins, G.N. The Cariostatic Potential of Cheese: Cooked Cheese-Containing Meals Increase Plaque Calcium Concentration. Br. Dent. J. 1999, 187, 664–667. [Google Scholar] [CrossRef]
- Öhlund, I.; Holgerson, P.L.; Bäckman, B.; Lind, T.; Hernell, O.; Johansson, I. Diet Intake and Caries Prevalence in Four-Year-Old Children Living in a Low-Prevalence Country. Caries Res. 2006, 41, 26–33. [Google Scholar] [CrossRef]
- Kashket, S.; Depaola, D.P. Cheese Consumption and the Development and Progression of Dental Caries. Nutr. Rev. 2002, 60, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Miyake, Y.; Sasaki, S.; Hirota, Y. Dairy Products and Calcium Intake during Pregnancy and Dental Caries in Children. Nutr. J. 2012, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Miyake, Y.; Sasaki, S. Intake of Dairy Products and the Prevalence of Dental Caries in Young Children. J. Dent. 2010, 38, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chang, R.; Mu, Y.; Deng, X.; Wu, F.; Zhang, S.; Zhou, D. Association between Obesity and Dental Caries in Chinese Children. Caries Res. 2013, 47, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Petti, S.; Cairella, G.; Tarsitani, G. Rampant Early Childhood Dental Decay: An Example from Italy. J. Public Health Dent. 2000, 60, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jin, G.; Gu, K.; Sun, J.; Zhang, R.; Jiang, X. Association between Milk and Dairy Product Intake and the Risk of Dental Caries in Children and Adolescents: NHANES 2011–2016. Asia Pac. J. Clin. Nutr. 2021, 30, 283–290. [Google Scholar] [CrossRef]
- Ma, J.; Furuta, M.; Uchida, K.; Takeshita, T.; Kageyama, S.; Asakawa, M.; Takeuchi, K.; Suma, S.; Sakata, S.; Hata, J.; et al. Yogurt Product Intake and Reduction of Tooth Loss Risk in a Japanese Community. J. Clin. Periodontol. 2022, 49, 345–352. [Google Scholar] [CrossRef]
- Al-Zahrani, M.S. Increased Intake of Dairy Products Is Related to Lower Periodontitis Prevalence. J. Periodontol. 2006, 77, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Adegboye, A.R.A.; Christensen, L.B.; Holm-Pedersen, P.; Avlund, K.; Boucher, B.J.; Heitmann, B.L. Intake of Dairy Products in Relation to Periodontitis in Older Danish Adults. Nutrients 2012, 4, 1219–1229. [Google Scholar] [CrossRef] [Green Version]
- Nishida, M.; Grossi, S.G.; Dunford, R.G.; Ho, A.W.; Trevisan, M.; Genco, R.J. Calcium and the Risk For Periodontal Disease. J. Periodontol. 2000, 71, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Guinot Jimeno, F.; Ferrer Colomar, M.; Veloso Durán, A.; Requena Martínez, C.; Lluch Llagostera, C.; Virolés Suñer, M. Potencial Cariogénico de Las Bebidas de Origen Vegetal Comparación a La Leche de Origen Bovino. Revisión Bibliográfica. Odontología Pediátrica 2020, 28, 38–49. [Google Scholar]
- Widanti, H.A.; Herda, E.; Damiyanti, M. Effect of Cow and Soy Milk on Enamel Hardness of Immersed Teeth. J. Phys. Conf. Ser. 2017, 884, 012006. [Google Scholar] [CrossRef] [Green Version]
- Vongsavan, K.; Surarit, R.; Rirattanapong, P. Effectiveness of Soy Milk with Calcium on Bovine Enamel Erosions after Soaking in Chlorinated Water. Southeast Asian J. Trop. Med. Public Health 2012, 43, 1292–1296. [Google Scholar] [PubMed]
- Danchaivijitr, A.; Nakornchai, S.; Thaweeboon, B.; Leelataweewud, P.; Phonghanyudh, A.; Kiatprajak, C.; Surarit, R. The Effect of Different Milk Formulas on Dental Plaque PH. Int. J. Paediatr. Dent. 2006, 16, 192–198. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Stanner, S.A.; Spiro, A. Public Health Rationale for Reducing Sugar: Strategies and Challenges. Nutr. Bull. 2020, 45, 253–270. [Google Scholar] [CrossRef]
- Tungare, S.; Paranjpe, A.G. Diet. and Nutrition To Prevent Dental Problems; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- U.S. Department of Agriculture. Agricultural Research Service. FoodData Central. 2019. Available online: https://fdc.nal.usda.gov/ (accessed on 10 February 2023).
- Naylor, M.N. Nutrition and Dental Decay. Proc. Nutr. Soc. 1984, 43, 257–263. [Google Scholar] [CrossRef]
- Lin, H.S.; Lin, J.R.; Hu, S.W.; Kuo, H.C.; Yang, Y.H. Association of Dietary Calcium, Phosphorus, and Magnesium Intake with Caries Status among Schoolchildren. Kaohsiung J. Med. Sci. 2014, 30, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Grenby, T.H.; Andrews, A.T.; Mistry, M.; Williams, R.J.H. Dental Caries-Protective Agents in Milk and Milk Products: Investigations in Vitro. J. Dent. 2001, 29, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, N.J.; Reynolds, E.C. Casein Phosphopeptides in Oral Health. In Food Constituents and Oral Health; Woodhead Publishing: Sawston, UK, 2009; pp. 185–224. [Google Scholar] [CrossRef]
- Walker, G.; Cai, F.; Shen, P.; Reynolds, C.; Ward, B.; Fone, C.; Honda, S.; Koganei, M.; Oda, M.; Reynolds, E. Increased Remineralization of Tooth Enamel by Milk Containing Added Casein Phosphopeptide-Amorphous Calcium Phosphate. J. Dairy Res. 2006, 73, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, B.; Huppertz, T. Glycemic Responses of Milk and Plant-Based Drinks: Food Matrix Effects. Foods 2023, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijse, H.; Huppertz, T. Heat-Induced Changes in Milk Salts: A Review. Int. Dairy J. 2022, 126, 105220. [Google Scholar] [CrossRef]
- Huppertz, T. Chemistry of the Caseins. In Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Huppertz, T.; Gazi, I.; Luyten, H.; Nieuwenhuijse, H.; Alting, A.; Schokker, E. Hydration of Casein Micelles and Caseinates: Implications for Casein Micelle Structure. Int. Dairy J. 2017, 74, 1–11. [Google Scholar] [CrossRef]
- Holt, C.; Lenton, S.; Nylander, T.; Sørensen, E.S.; Teixeira, S.C.M. Mineralisation of Soft and Hard Tissues and the Stability of Biofluids. J. Struct. Biol. 2014, 185, 383–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering Capacity of Dairy Products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Le Graët, Y.; Gaucheron, F. PH-Induced Solubilization of Minerals from Casein Micelles: Influence of Casein Concentration and Ionic Strength. J. Dairy Res. 1999, 66, 215–224. [Google Scholar] [CrossRef]
- Alm, L. Effect of Fermentation on Lactose, Glucose, and Galactose Content in Milk and Suitability of Fermented Milk Products for Lactose Intolerant Individuals. J. Dairy Sci. 1982, 65, 346–352. [Google Scholar] [CrossRef]
- Lembke, A.; Pause, B. Anticaries Effectiveness of D(+)-Galactose. Z. Stomatol. 1989, 86, 179–189. [Google Scholar]
- Edgar, W.M.; Higham, S.M.; Manning, R.H. Saliva Stimulation and Caries Prevention. Adv. Dent. Res. 1994, 8, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, X.; Du, L.; Li, J.; Xu, J.; Shi, Z.; Li, C.; Tu, M.; Zeng, X.; Wu, Z.; et al. The Effect of Natural Plant-Based Homogenates as Additives on the Quality of Yogurt: A Review. Food Biosci. 2022, 49, 101953. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogues—A Review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
Dental Health Diseases | Definitions | References |
---|---|---|
Dental caries | is the demineralisation of dental hard tissues (enamel and dentine), caused by organic acids produced in the bacterial fermentation of dietary carbohydrates. | [19,22,26] |
Periodontal disease | is a disease characterised by inflammation and damage of tooth-supporting structures. | [27] |
Dental fluorosis | is a disease characterised by hypomineralisation of the tooth enamel, causing changes in the appearance of the enamel such as opaque spots or brown and yellow spots. | [23] |
Dental erosion | is the irreversible loss of dental hard tissue caused by a chemical process without bacterial involvement. | [19,20] |
Developmental Defects of Enamel | have been defined as disturbances in the matrix of hard tissues and their mineralisation during odontogenesis. | [25] |
Dietary Factors | Dental Health Effect | References |
---|---|---|
Lactose | Limited cariogenicity | [26,45,46] |
Sucrose | Cariogenic | [47,48,49,50,51] |
Calcium | Protective | [52,53,54,55] |
Phosphorus | Protective | [52,53,54,55] |
Casein | Protective | [46,56,57,58,59,60,61,62,63] |
Lactoferrin, lysozyme, and lactoperoxidase | Protective | [16,57,64,65,66,67,68] |
Milk fat | Protective | [56,69,70] |
Fluoride | Protective (not at a high amount) | [41,71,72,73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shkembi, B.; Huppertz, T. Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects. Nutrients 2023, 15, 1469. https://doi.org/10.3390/nu15061469
Shkembi B, Huppertz T. Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects. Nutrients. 2023; 15(6):1469. https://doi.org/10.3390/nu15061469
Chicago/Turabian StyleShkembi, Blerina, and Thom Huppertz. 2023. "Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects" Nutrients 15, no. 6: 1469. https://doi.org/10.3390/nu15061469
APA StyleShkembi, B., & Huppertz, T. (2023). Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects. Nutrients, 15(6), 1469. https://doi.org/10.3390/nu15061469