Prevalence of Adverse Drug Events in Severely Obese Adults and Associated Factors: Clinical Trial Baseline Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Study Design
2.2. Subjects
2.3. Variables
2.3.1. Sociodemographic
2.3.2. Lifestyle
2.3.3. Health
2.3.4. Drug Use
2.4. Data Collection
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Medication without Harm-Global Patient Safety Challenge on Medication Safety; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ferner, R.E.; Butt, T.F. Adverse drug reactions. Medicine 2008, 36, 364–368. [Google Scholar] [CrossRef]
- World Health Organization. The Conceptual Framework for the International Classification for Patient Safety Version 1.1 Final Technical Report; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Molokhia, M.; Majeed, A. Current and future perspectives on the management of polypharmacy. BMC Fam. Pract. 2017, 18, 70. [Google Scholar] [CrossRef] [Green Version]
- Doos, L.; Roberts, E.O.; Corp, N.; Kadam, U.T. Multi-drug therapy in chronic condition multimorbidity: A systematic review. Fam. Pract. 2014, 31, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Larrañaga, A.; Poblador-Plou, B.; González-Rubio, F.; Gimeno-Feliu, L.A.; Abad-Díez, J.M.; Prados-Torres, A. Multimorbidity, polypharmacy, referrals, and adverse drug events: Are we doing things well? Br. J. Gen. Pract. 2012, 62, 821–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, 176–185. [Google Scholar]
- The Global Burden of Disease 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Hansel, K.; Bianchi, L.; Lanza, F.; Bini, V.; Stingeni, L. Adalimumab Dose Tapering in Psoriasis: Predictive Factors for Maintenance of Complete Clearance. Acta Derm. Venereol. 2017, 97, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D. Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015, 100, 342–362. [Google Scholar] [CrossRef]
- Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol. Ther. 2016, 170, 116–147. [Google Scholar] [CrossRef] [Green Version]
- Seoane, L.; Barja-Fenández, S.; Leis, R.; Casanueva, F.F.; Barja-Fernandez, S. Drug development strategies for the treatment of obesity: How to ensure efficacy, safety, and sustainable weight loss. Drug Des. Dev. Ther. 2014, 8, 2391–2400. [Google Scholar] [CrossRef] [Green Version]
- Khera, R.; Murad, M.H.; Chandar, A.K.; Dulai, P.S.; Wang, Z.; Prokop, L.J.; Loomba, R.; Camilleri, M.; Singh, S. Association of pharmacological treatments for obesity with weight loss and adverse events: A systematic review and meta-analysis. JAMA 2016, 315, 2424. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ramamoorthy, A.; Huang, S.-M. Real-World Data and Clinical Pharmacology: A Regulatory Science Perspective. Clin. Pharmacol. Ther. 2019, 106, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, M.; A Greller, H.; Babu, K.M. A Review of the Toxicologic Implications of Obesity. J. Med. Toxicol. 2015, 11, 342–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, E.A.; de Souza Rosa, L.P.; de Souza Cardoso, C.K.; Noll, M. Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. Int. J. Environ. Res. Public Health 2020, 17, 3930. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Rodrigues, A.P.S.; Rosa, L.P.; Sarrafzadegan, N.; Silveira, E.A. Cardiometabolic risk factors and Framingham Risk Score in severely obese patients: Baseline data from DieTBra trial. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 474–482. [Google Scholar] [CrossRef]
- Brown, E.G.; Wood, S.; Brown, E.G.; Wood, L. The Medical Dictionary for Regulatory Activities (MedDRA). Drug Saf. 1999, 20, 109–117. [Google Scholar] [CrossRef]
- Abep. Critério Padrão de Classificação Econômica Brasil. pp. 1–3. Available online: http://www.academia.edu/download/48356646/CCE.pdf (accessed on 11 August 2020).
- Bloomfield, K.; Allamani, A.; Beck, F.; Bergmark, K.H.; Csemy, L.; Eisenbach-Stangl, I.; Elekes, Z.; Gmel, G.; Ker-Correa, F.; Knibbe, R.; et al. Gender, Culture and Alcohol Problems: A Multi-National Study; Institute for Medical Informatics: Berlin, Germany, 2005. [Google Scholar]
- Organizacíón Panamericana de la Salud. Guias Para el Control y Monitoreo de la Epidemia Tabaquica; Organizacíón Panamericana de la Salud: Caracas, Venezuela, 1995. [Google Scholar]
- National Cholesterol Education Program Expert Panel on Detection E and T of HBC in A. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- American Diabetes Association. Standard of medical care in diabetes—2017. Diabetes Care 2017, 40 (Suppl. 1), s4–s128. [Google Scholar] [CrossRef] [Green Version]
- Drozda, J.; Messer, J.V.; Spertus, J.; Abramowitz, B.; Alexander, K.; Beam, C.T.; Bonow, R.O.; Burkiewicz, J.S.; Crouch, M.; Goff, D.C.; et al. ACCF/AHA/AMA-PCPI 2011 Performance Measures for Adults With Coronary Artery Disease and Hypertension: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures and the American Medical Association—Physician Consortium for Performance Improvement. Circulation 2011, 124, 248–270. [Google Scholar]
- Keith, S.W.; Redden, D.T.; Katzmarzyk, P.T.; Boggiano, M.M.; Hanlon, E.C.; Benca, R.M.; Ruden, D.; Pietrobelli, A.; Barger, J.L.; Fontaine, K.R.; et al. Putative contributors to the secular increase in obesity: Exploring the roads less traveled. Int. J. Obes. 2006, 30, 1585–1594. [Google Scholar] [CrossRef] [Green Version]
- Domecq, J.P.; Prutsky, G.; Leppin, A.; Sonbol, M.B.; Altayar, O.; Undavalli, C.; Wang, Z.; Elraiyah, T.; Brito, J.P.; Mauck, K.F.; et al. Drugs Commonly Associated with Weight Change: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2015, 100, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Guharoy, R. Polypharmacy: America’s other drug problem. Am. J. Health-Syst. Pharm. 2017, 74, 1305–1306. [Google Scholar] [CrossRef]
- World Health Organization. The Role of the Pharmacist in Self-Care and Self-Medication Content; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- World Health Organization. Guidelines for ATC Classification and DDD Assignment 2015. Vol. 1, WHO Collaborating Centre for Drug Statistics Methodology; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Truven Health Analytics. Micromedex; Truven Health Analytics: Greenwood Village, CO, USA, 2017. [Google Scholar]
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Tetteh, R.A.; Nartey, E.T.; Lartey, M.; Mantel-Teeuwisse, A.K.; Leufkens, H.G.M.; Yankey, B.A.; Dodoo, A.N.O. Association Between the Occurrence of Adverse Drug Events and Modification of First-Line Highly Active Antiretroviral Therapy in Ghanaian HIV Patients. Drug Saf. 2016, 39, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, G.; Vitalone, A.; Da Cas, R.; Menniti-Ippolito, F. Suspected adverse reactions associated with herbal products used for weight loss: Spontaneous reports from the Italian Phytovigilance System. Eur. J. Clin. Pharmacol. 2019, 75, 1599–1615. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, L.A.O.; Fonteles, M.M.D.F.; Monteiro, M.P.; Mengue, S.S.; Bertoldi, A.D.; Pizzol, T.D.S.D.; Tavares, N.U.L.; Oliveira, M.A.; Luiza, V.L.; Ramos, L.R.; et al. Prevalência e características dos eventos adversos a medicamentos no Brasil. Cad. Saúde Pública 2018, 34. [Google Scholar] [CrossRef] [PubMed]
- Moctezuma-Velazquez, C.; Márquez-Guillén, E.; Torre, A. Obesity in the Liver Transplant Setting. Nutrients 2019, 11, 2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilleri, M.; Malhi, H.; Acosta, A. Gastrointestinal Complications of Obesity. Gastroenterology 2017, 152, 1656–1670. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, L.; Li, D.; Niu, J.; Gao, P. Dyslipidemia is a Risk Factor for the Incidence and Severity of Drug-Induced Liver Injury (DILI): A Retrospective Population-Based Study in China. Med. Sci. Monit. 2019, 25, 3344–3353. [Google Scholar] [CrossRef]
- Sasaki, N.; Fujiwara, S.; Yamashita, H.; Ozono, R.; Monzen, Y.; Teramen, K.; Kihara, Y. Association between obesity and self-reported sleep duration variability, sleep timing, and age in the Japanese population. Obes. Res. Clin. Pract. 2018, 12, 187–194. [Google Scholar] [CrossRef]
- Huber, C.A.; Szucs, T.D.; Rapold, R.; Reich, O. Identifying patients with chronic conditions using pharmacy data in Switzerland: An updated mapping approach to the classification of medications. BMC Public Health 2013, 13, 1030. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.A.; Adams, A.; Dudley, B.; Davison, E.; Jones, L.; Wales, L. Making surgical wards safer for patients with diabetes: Reducing hypoglycaemia and insulin errors. BMJ Open Qual. 2018, 7, e000312. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhao, R.-Y.; He, X.-W.; Shan, Y.-M.; Zhu, L.-L. A stewardship intervention program for safe medication management and use of antidiabetic drugs. Clin. Interv. Aging 2015, 10, 1201–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratanawongsa, N.; Chan, L.L.S.; Fouts, M.M.; Murphy, E.J. The Challenges of Electronic Health Records and Diabetes Electronic Prescribing: Implications for Safety Net Care for Diverse Populations. J. Diabetes Res. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanagaratnam, L.; Dramé, M.; Trenque, T.; Oubaya, N.; Nazeyrollas, P.; Novella, J.; Jolly, D.; Mahmoudi, R. Adverse drug reactions in elderly patients with cognitive disorders: A systematic review. Maturitas 2016, 85, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Dwivedi, S. Study of adverse drug reactions in patients with diabetes attending a tertiary care hospital in New Delhi, India. Indian J. Med. Res. 2017, 145, 247–249. [Google Scholar] [PubMed]
- Dostalek, M.; Akhlaghi, F.; Puzanovova, M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin. Pharmacokinet. 2012, 51, 481–499. [Google Scholar] [CrossRef]
- Shehab, N.; Lovegrove, M.C.; Geller, A.I.; Rose, K.O.; Weidle, N.J.; Budnitz, D.S. US emergency department visits for outpatient adverse drug events, 2013–2014. JAMA 2016, 316, 2115–2125. [Google Scholar] [CrossRef]
- Geller, A.I.; Shehab, N.; Lovegrove, M.C.; Scott, R.; Weidenbach, K.N.; Ryan, G.J.; Budnitz, D.S. National estimates of insulin-related hypoglycaemia and errors leading to emergency department visits and hospitalizations. JAMA 2014, 174, 678–686. [Google Scholar]
- Karter, A.J.; Warton, E.M.; Lipska, K.J.; Ralston, J.D.; Moffet, H.H.; Jackson, G.G.; Huang, E.S.; Miller, D.R. Development and validation of a tool to identify patients with type 2 diabetes at high risk of hypoglicemia-related emergency department or hospital use. JAMA Intern. Med. 2019, 177, 1461–1470. [Google Scholar] [CrossRef]
- Panagioti, M.; Stokes, J.; Esmail, A.; Coventry, P.A.; Cheraghi-Sohi, S.; Alam, R.; Bower, P. Multimorbidity and Patient Safety Incidents in Primary Care: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0135947. [Google Scholar] [CrossRef] [Green Version]
- Banda, J.M.; Callahan, A.; Winnenburg, R.; Strasberg, H.R.; Cami, A.; Reis, B.Y.; Vilar, S.; Hripcsak, G.; Dumontier, M.; Shah, N.H. Feasibility of Prioritizing Drug–Drug-Event Associations Found in Electronic Health Records. Drug Saf. 2015, 39, 45–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locquet, M.; Honvo, G.; Rabenda, V.; Van Hees, T.; Petermans, J.; Reginster, J.-Y.; Bruyère, O. Adverse Health Events Related to Self-Medication Practices Among Elderly: A Systematic Review. Drugs Aging 2017, 34, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Schmiedl, S.; Rottenkolber, M.; Hasford, J.; Rottenkolber, D.; Farker, K.; Drewelow, B.; Hippius, M.; Saljé, K.; Thurmann, P.A. Self-Medication with Over-the-Counter and Prescribed Drugs Causing Adverse-Drug-Reaction-Related Hospital Admissions: Results of a Prospective, Long-Term Multi-Centre Study. Drug Saf. 2014, 37, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Giordani, F.; Rozenfeld, S.; Martins, M. Adverse drug events identified by triggers at a teaching hospital in Brazil. BMC Pharmacol. Toxicol. 2014, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.; Chandler, R.E.; Taavola, H.; Härmark, L.; Grundmark, B.; Zekarias, A.; Star, K.; Van Hunsel, F. Safety Concerns Reported by Patients Identified in a Collaborative Signal Detection Workshop using VigiBase: Results and Reflections from Lareb and Uppsala Monitoring Centre. Drug Saf. 2018, 41, 203–212. [Google Scholar] [CrossRef]
Adverse Drug Events | n (%) |
---|---|
Gastrointestinal disorders | 30 (61.22) |
Nervous system disorders | 20 (40.82) |
Skin and subcutaneous tissue disorders | 3 (6.12) |
Cardiac disorders | 2 (4.08) |
General disorders and administration site conditions | 2 (4.08) |
Renal and urinary disorders | 2 (4.08) |
Respiratory, thoracic, and mediastinal disorders | 2 (4.08) |
Blood and lymphatic system disorders | 1 (2.04) |
Metabolism and nutrition disorders | 1 (2.04) |
Musculoskeletal, connective tissue, and bone disorders | 1 (2.04) |
Reproductive system and breast disorders | 1 (2.04) |
ATC Classification | Total n (%) | ADE Presence | p Value | |
---|---|---|---|---|
A | Alimentary Tract and metabolism | 57 (38.00%) | 30 (52.63%) | 0.000 * |
B | Blood and forming blood organs | 11 (7.33%) | 6 (54.55%) | 0.108 * |
C | Cardiovascular system | 65 (43.33%) | 32 (49.23%) | 0.000 * |
D | Dermatological | 0 | 0 | 0 |
G | Genito urinary system and sex hormones | 12 (8.00%) | 3 (25.00%) | 0.406 ** |
H | Systemic hormonal preparations, excluding sex hormones and insulins | 10 (6.67%) | 5 (50.00%) | 0.226 * |
J | Antiinfectives for systemic use | 6 (4.00%) | 2 (33.33%) | 0.640 ** |
L | Antineoplastic and immunomodulating agents | 0 | 0 | 0 |
M | Musculo-skeletal system | 97 (64.67%) | 37 (38.14%) | 0.053 * |
N | Nervous system | 86 (57.33%) | 29 (33.72%) | 0.750 * |
P | Antiparasitic products, insecticides and repellents | 1 (0.67%) | 0 (0%) | - |
R | Respiratory system | 17 (11.33%) | 5 (29.41%) | 0.761 * |
S | Sensory organs | 1 (0.67%) | 0 (0%) | - |
V | Various | 0 | 0 | 0 |
NC | Non-Classifiable | 16 (10.67%) | 8 (50.00%) | 0.118 * |
Variables | Total n (%) | Presence of ADE | PR (CI 95%) | p-Value |
---|---|---|---|---|
Sex | ||||
Male | 22 (14.67) | 6 (27.27) | 1.00 | 0.559 * |
Female | 128 (85.33) | 43 (33.59) | 1.23 (0.59–2.54) | |
Age | ||||
18–39 | 76 (50.67) | 18 (23.68) | 1.00 | 0.030 ** |
40–49 | 53 (35.33) | 22 (41.51) | 1.75 (1.04–2.93) | |
≥50 | 21 (14.00) | 9 (42.86) | 1.80 (0.95–3.43) | |
Skin Color | ||||
White | 46 (30.67) | 16 (34.78) | 1.15 (0.68–1.93) | 0.734 * |
Brown | 83 (55.33) | 25 (30.12) | 1.00 | |
Black | 21 (14.00) | 8 (38.10) | 1.26 (0.66–2.39) | |
Economic Class | ||||
Class A/B | 34 (22.67) | 12 (35.29) | 1.20 (0.68–2.09) | 0.484 * |
Class C | 92 (61.33) | 27 (29.35) | 1.00 | |
Class D/E | 24 (16.00) | 10 (41.67) | 1.41 (0.80–2.51) | |
Lives with Partner | ||||
No | 55 (36.67) | 19 (34.55) | 1.09 (0.68–1.75) | 0.709 * |
Yes | 95 (63.33) | 30 (31.58) | 1.00 | |
Smoking | ||||
No | 101 (67.33) | 32 (31.68) | 1.00 | 0.712 * |
Yes | 49 (32.67) | 17 (34.69) | 1.09 (0.67–1.77) | |
Alcohol Intake (n = 84) | ||||
No | 13 (15.48) | 3 (23.08) | 1.00 | 0.301 *** |
Yes | 71 (84.52) | 27 (38.03) | 1.64 (0.58–4.67) | |
Body Mass Index | ||||
35–39 | 27 (18.00) | 11 (40.74) | 1.31 (0.77–2.23) | 0.323 * |
≥40 | 123 (82.00) | 38 (30.89) | 1.00 | |
Arterial Hypertension | ||||
No | 65 (43.33) | 12 (18.46) | 1.00 | 0.001 * |
Yes | 85 (56.67) | 37 (43.53%) | 2.35 (1.33–4.15) | |
Diabetes | ||||
No | 90 (60.00) | 20 (22.22) | 1.00 | 0.001 * |
Yes | 60 (40.00) | 29 (48.33) | 2.17 (1.36–3.47) | |
Hypercholesterolemia | ||||
No | 94 (62.67) | 29 (30.85%) | 1.00 | 0.539 * |
Yes | 56 (37.33) | 20 (35.71%) | 1.15 (0.72–1.84) | |
Comorbidities | ||||
≤3 | 89 (59.33) | 20 (22.47) | 1.00 | 0.001 * |
≥4 | 61 (40.67) | 29 (47.54) | 2.11 (1.32–3.38) | |
Drugs that Cause Weight Gain | ||||
No | 106 (70.67%) | 28 (26.42%) | 1.00 | 0.011 * |
Yes | 44 (29.33%) | 21 (47.73%) | 1.80 (1.15–2.81) | |
Self-Medication | ||||
0 | 23 (15.33%) | 6 (26.09%) | 1.00 | 0.178 * |
1–2 | 89 (59.33%) | 26 (29.21%) | 1.11 (0.52–2.40) | |
≥3 | 38 (25.33%) | 17 (44.74%) | 1.71 (0.78–3.72) | |
Polypharmacy | ||||
No | 101 (67.33%) | 19 (18.81%) | 1.00 | <0.001 * |
Yes | 49 (32.67%) | 30 (61.22%) | 3.25 (2.04–5.17) | |
Potential Drug Interactions | ||||
No | 75 (50.00) | 12 (16.00) | 1.00 | <0.001 * |
Yes | 75 (50.00) | 37 (49.33) | 3.08 (1.60–5.91) |
Variables | Adjusted Prevalence Ratio | CI 95% Adjusted | p Value * |
---|---|---|---|
Age | |||
18–39 | 1.00 | ||
40–49 | 1.75 | 1.04–2.93 | 0.033 |
≥50 | 1.81 | 0.95–3.43 | 0.069 |
Diabetes | |||
No | 1.00 | ||
Yes | 2.03 | 1.26–3.29 | 0.004 |
Comorbidities | |||
≤3 | 1.00 | ||
≥4 | 1.91 | 1.17–3.11 | 0.009 |
Self-medication | |||
0 | 1.00 | ||
1–2 | 1.45 | 0.72–2.89 | 0.290 |
≥3 | 2.15 | 1.07–4.35 | 0.031 |
Potential drug interactions | |||
No | 1.00 | ||
Yes | 2.21 | 1.15–4.26 | 0.017 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modesto, A.C.F.; Silveira, E.A.; Santos, A.S.e.A.d.C.; Rodrigues, A.P.d.S.; Lima, D.M.; Provin, M.P.; Amaral, R.G. Prevalence of Adverse Drug Events in Severely Obese Adults and Associated Factors: Clinical Trial Baseline Results. Sci. Pharm. 2020, 88, 41. https://doi.org/10.3390/scipharm88040041
Modesto ACF, Silveira EA, Santos ASeAdC, Rodrigues APdS, Lima DM, Provin MP, Amaral RG. Prevalence of Adverse Drug Events in Severely Obese Adults and Associated Factors: Clinical Trial Baseline Results. Scientia Pharmaceutica. 2020; 88(4):41. https://doi.org/10.3390/scipharm88040041
Chicago/Turabian StyleModesto, Ana Carolina Figueiredo, Erika Aparecida Silveira, Annelisa Silva e Alves de Carvalho Santos, Ana Paula dos Santos Rodrigues, Dione Marçal Lima, Mércia Pandolfo Provin, and Rita Goreti Amaral. 2020. "Prevalence of Adverse Drug Events in Severely Obese Adults and Associated Factors: Clinical Trial Baseline Results" Scientia Pharmaceutica 88, no. 4: 41. https://doi.org/10.3390/scipharm88040041
APA StyleModesto, A. C. F., Silveira, E. A., Santos, A. S. e. A. d. C., Rodrigues, A. P. d. S., Lima, D. M., Provin, M. P., & Amaral, R. G. (2020). Prevalence of Adverse Drug Events in Severely Obese Adults and Associated Factors: Clinical Trial Baseline Results. Scientia Pharmaceutica, 88(4), 41. https://doi.org/10.3390/scipharm88040041