Formulations with Boric Acid or Aryl-Organoboron Compounds for Treating Diabetic Foot Ulcers
Abstract
:1. Introduction
2. Search Methodology
3. Experimental (Preclinical) Data of Boric Acid Pertaining to Wound Healing
4. Experimental (Preclinical) Data of Boronic Compounds Pertaining to Wound Healing and Diabetes
5. Data from Studies Using BCCs for Wound Healing in Humans
6. Antibiotic Effects on Specific Microorganisms Related to Infections Associated with Diabetic Foot Ulcers
7. Chemical and Physiological Interactions of Boric and Boronic Acids in Formulations: Complementary Action in Treatment
7.1. Potential Chemical Interactions
7.2. Potential Complementary Effects in Wound Healing and Beyond
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grams, R.J.; Santos, W.L.; Scorei, I.R.; Abad-García, A.; Rosenblum, C.A.; Bita, A.; Cerecetto, H.; Viñas, C.; Soriano-Ursúa, M.A. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem. Rev. 2024, 124, 2441–2511. [Google Scholar] [CrossRef]
- Das, B.C.; Nandwana, N.K.; Das, S.; Nandwana, V.; Shareef, M.A.; Das, Y.; Saito, M.; Weiss, L.M.; Almaguel, F.; Hosmane, N.S.; et al. Boron chemicals in drug discovery and development: Synthesis and medicinal perspective. Molecules 2022, 27, 2615. [Google Scholar] [CrossRef]
- Estevez-Fregoso, E.; Kilic, A.; Rodríguez-Vera, D.; Nicanor-Juárez, L.E.; Romero-Rizo, C.E.M.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Effects of boron-containing compounds on liposoluble hormone functions. Inorganics 2023, 11, 84. [Google Scholar] [CrossRef]
- Soriano-Ursúa, M.A.; Cordova-Chávez, R.I.; Farfan-García, E.D.; Kabalka, G. Boron-containing compounds as labels, drugs, and theranostic agents for diabetes and its complications. World J. Diabetes 2024, 15, 1060–1069. [Google Scholar] [CrossRef]
- Şahin, F.; Pirouzpanah, M.B.; Farshbaf-Khalili, A.; Ayşan, E.; Doğan, A.; Demirci, S.; Ostadrahimi, A.; Mobasseri, M. The effect of the boron-based gel on the treatment of diabetic foot ulcers: A prospective, randomized controlled trial. J. Trace Elem. Med. Biol. 2023, 79, 127261. [Google Scholar] [CrossRef] [PubMed]
- Coskun, M. Success in treating wounds with local boric acid: A case study. J. Wound Care 2023, 32, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Arciniega-Martínez, I.M.; Romero-Aguilar, K.S.; Farfán-García, E.D.; García-Machorro, J.; Reséndiz-Albor, A.A.; Soriano-Ursúa, M.A. Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J. Trace Elem. Med. Biol. 2022, 69, 126901. [Google Scholar] [CrossRef]
- Xu, L.-Z.; Deng, J.; Liu, T.; Ren, M.; Hu, Q.-Q.; Li, S.-H.; Gu, Y.-F.; Wang, C.-F.; Jin, E.-H. Boron Modulates the Barrier Function, Antioxidant Activity, and Epithelial Cell Proliferation in Rat Jejunum. Curr. Top. Nutraceutical Res. 2022, 20, 97–105. [Google Scholar] [CrossRef]
- Beyranvand, S.; Pourghobadi, Z.; Sattari, S.; Soleymani, K.; Donskyi, I.; Gharabaghi, M.; Unger, W.E.; Farjanikish, G.; Nayebzadeh, H.; Adeli, M. Boronic acid functionalized graphene platforms for diabetic wound healing. Carbon 2020, 158, 327–336. [Google Scholar] [CrossRef]
- Nzietchueng, R.M.; Dousset, B.; Franck, P.; Benderdour, M.; Nabet, P.; Hess, K. Mechanisms implicated in the effects of boron on wound healing. J. Trace Elem. Med. Biol. 2002, 16, 239–244. [Google Scholar] [CrossRef]
- Benderdour, M.; Van Bui, T.; Hess, K.; Dicko, A.; Belleville, F.; Dousset, B. Effects of boron derivatives on extracellular matrix formation. J. Trace Elem. Med. Biol. 2000, 14, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Durick, K.A.; Tomita, M.; Hunt, C.; Bradley, D. Evidence that boron down-regulates inflammation through the NF-KB pathway[abstract]. FASEB J. 2005, 19, A1705. [Google Scholar]
- Tepedelen, B.E.; Soya, E.; Korkmaz, M. Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process. Biol. Trace Elem. Res. 2016, 174, 309–318. [Google Scholar] [CrossRef]
- Demirci, S.; Doğan, A.; Aydın, S.; Dülger, E.Ç.; Şahin, F. Boron promotes streptozotocin-induced diabetic wound healing: Roles in cell proliferation and migration, growth factor expression, and inflammation. Mol. Cell. Biochem. 2016, 417, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Z.; Zhang, C.; Xu, Y.; Li, X.; Gao, H. Effects of 3% Boric Acid Solution on Cutaneous Candida albicans Infection and Microecological Flora Mice. Front. Microbiol. 2021, 12, 709880. [Google Scholar] [CrossRef] [PubMed]
- Konca, M.; Korkmaz, M. Comparison of effects of administration of oral or topical boron on wound healing and oxidative stress in rats. Kocatepe Veter J. 2020, 13, 11–18. [Google Scholar] [CrossRef]
- Katsukawa, C.; Harada, K.; Tsugami, H.; Makino, M. A study of the antibacterial effect of boric acid. Chemotherapy 1993, 41, 1160–1166. [Google Scholar] [CrossRef]
- Zan, R.; Hubbezoglu, I.; Ozdemır, A.; Tunc, T.; Sumer, Z.; Alıcı, O. Antibacterial effect of different concentration of boric acid against enterococcus faecalis biofilms in root canal. Marmara Dent. J. 2013, 1, 76–80. [Google Scholar] [CrossRef]
- Bayir, Y.; Erkayman, B.; Albayrak, A.; Palabiyik-Yücelik, Ş.S.; Can, S.; Hanci, H.; Tunç, F.; Halici, H.; Civelek, M.S.; Sevim, M.; et al. Boric acid and zinc borate doped graphene hydrogels designed for burn treatment: In vitro viability-biocompatibility tests and microbiological analysis. J. Biomater. Appl. 2024, 39, 592–606. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Tang, S.; Chen, Y.; Lan, L.; Li, S.; Xiong, M.; Hu, X.; Liu, Y.H.; Sun, J.; et al. A Boron-Based Probe Driven Theranostic Hydrogel Dressing for Visual Monitoring and Matching Chronic Wound Healing. Adv. Funct. Mater. 2023, 33, 2305580. [Google Scholar] [CrossRef]
- Doğan, A.; Demirci, S.; Çağlayan, A.B.; Kılıç, E.; Günal, M.Y.; Uslu, Ü.; Cumbul, A.; Şahin, F. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing In Vitro and In Vivo. Biol. Trace Elem. Res. 2014, 162, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Kırbaş, O.K.; Bozkurt, B.T.; Taşlı, P.N.; Hayal, T.B.; Özkan, I.; Bülbül, B.; Beyaz, S.; Şahin, F. Effective Scarless Wound Healing Mediated by Erbium Borate Nanoparticles. Biol. Trace Elem. Res. 2020, 199, 3262–3271. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.R.; Hwang, C.; Talbot, S.; Hibler, B.; Matoori, S.; Mooney, D.J. Breakthrough treatments for accelerated wound healing. Sci. Adv. 2023, 9, eade7007. [Google Scholar] [CrossRef]
- Lindholm, C.; Searle, R. Wound management for the 21st century: Combining effectiveness and efficiency. Int. Wound J. 2016, 13 (Suppl. S2), 5–15. [Google Scholar] [CrossRef] [PubMed]
- İlçe, A.Ö.; Yiğit, Ü.; Suveren, E.; Altuğ, C.; Boran, Ç.; Kolukısa, S.; Büyükbayram, M. The Effect of Novel Boron Ester Derivatives on Wound Healing. Sağlık Bakım Rehabil. Derg. 2024, 3, 33–46. [Google Scholar]
- Gundogdu, G.; Nalci, K.A.; Kaplan, A.B.U.; Gundogdu, K.; Demirci, T.; Miloglu, F.D.; Hacımuftuoglu, A.; Cetin, M. The evaluation of the effects of nanoemulsion formulations containing boron and/or zinc on the wound healing in diabetic rats. Int. J. Low. Extrem. Wounds 2022, 21, 492–501. [Google Scholar] [CrossRef]
- Abid, H.M.U.; Hanif, M.; Mahmood, K.; Aziz, M.; Abbas, G.; Latif, H. Wound-healing and antibacterial activity of the quercetin–4-formyl phenyl boronic acid complex against bacterial pathogens of diabetic foot ulcer. ACS Omega 2022, 7, 24415–24422. [Google Scholar] [CrossRef]
- Bheemisetty, B.; Lewis, S.A. Exploring biomedical applications of phenylboronic acid—Functionalized chitosan conjugates. J. Appl. Pharm. Sci. 2024, 14, 51–60. [Google Scholar] [CrossRef]
- Zhao, B.; Zhu, S.; Liu, Y.; Zhu, J.; Luo, H.; Li, M.; Wang, H.; Feng, Q.; Cao, X. Enriching and Smart Releasing Curcumin via Phenylboronic Acid-Anchored Bioinspired Hydrogel for Diabetic Wound Healing. Adv. Nano Biomed. Res. 2023, 3, 2200177. [Google Scholar] [CrossRef]
- Zhang, W.; Zha, K.; Xiong, Y.; Hu, W.; Chen, L.; Lin, Z.; Yu, C.; Zhou, W.; Cao, F.; Hu, H.; et al. Glucose-responsive, antioxidative HA-PBA-FA/EN106 hydrogel enhanced diabetic wound healing through modulation of FEM1b-FNIP1 axis and promoting angiogenesis. Bioact. Mater. 2023, 30, 29–45. [Google Scholar] [CrossRef]
- Temel, H.; Atlan, M.; Ertas, A.; Yener, I.; Akdeniz, M.; Yazan, Z.; Yilmaz, M.A.; Doganyigit, Z.; Okan, A.; Akyuz, E. Cream production and biological in vivo/in vitro activity assessment of a novel boron-based compound derived from quercetin and phenyl boronic acid. J. Trace Elem. Med. Biol. 2022, 74, 127073. [Google Scholar] [CrossRef]
- Abid, S.; Sial, N.; Hanif, M.; Abid, H.M.U.; Ismail, A.; Tahir, H. Unlocking the potential of phenyl boronic acid functionalized-quercetin nanoparticles: Advancing antibacterial efficacy and diabetic wound healing. Heliyon 2024, 10, e23452. [Google Scholar] [CrossRef]
- Corradino, B.; Toia, F.; di Lorenzo, S.; Cordova, A.; Moschella, F. A difficult case of necrotizing fasciitis caused by acinetobacter baumannii. Int. J. Low. Extrem. Wounds 2010, 9, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Krisp, C.; Kubutat, C.; Kyas, A.; Steinsträßer, L.; Jacobsen, F.; Wolters, D. Boric acid gel enrichment of glycosylated proteins in human wound fluids. J. Proteom. 2011, 74, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Fırat, C.; Erbatur, S.; Aytekin, A.H. Management of extravasation injuries: A retrospective study. J. Plast. Surg. Hand Surg. 2013, 47, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, Z.; Lei, S.; Zhou, J.; Liu, Y.; Yu, X.; Wang, J.; Wan, D.; Shi, J.; Wang, S. A temperature and pH dual-responsive injectable self-healing hydrogel prepared by chitosan oligosaccharide and aldehyde hyaluronic acid for promoting diabetic foot ulcer healing. Int. J. Biol. Macromol. 2023, 253, 127213. [Google Scholar] [CrossRef]
- Tagawa, T.; Kono, K.; Dote, T.; Usuda, K.; Nishiura, H.; Koizumi, C.; Saito, M.; Nakaya, H.; Nagaie, H. Pharmacokinetics and effects after intravenous administration of high-dose boron to rat. Int. Arch. Occup. Environ. Health 2000, 73 (Suppl. S1), S98–S100. [Google Scholar] [CrossRef]
- Murray, F.J. A comparative review of the pharmacokinetics of boric acid in rodents and humans. Biol. Trace Elem. Res. 1998, 66, 331–341. [Google Scholar] [CrossRef]
- Hadrup, N.; Frederiksen, M.; Sharma, A.K. Toxicity of boric acid, borax and other boron containing compounds: A review. Regul. Toxicol. Pharmacol. 2021, 121, 104873. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fu, R.; Duan, Z.; Zhu, C.; Deng, J.; Fan, D. Ionic liquid-based non-releasing antibacterial, anti-inflammatory, high-transparency hydrogel coupled with electrical stimulation for infected diabetic wound healing. Compos. Part B Eng. 2022, 236, 109804. [Google Scholar] [CrossRef]
- Buch, P.J.; Chai, Y.; Goluch, E.D. Treating polymicrobial infections in chronic diabetic wounds. Clin. Microbiol. Rev. 2019, 32, e00091-00018. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Patel, V.; Shah, U.; Patel, A. Molecular pathology and therapeutics of the diabetic foot ulcer; comprehensive reviews. Arch. Physiol. Biochem. 2024, 130, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Khan, M.N.; Syed, F.; Ali, S.H.B.; Malik, T.A.; Alnasser, S.M.A.; Ahmad, A.; Karimulla, S.; Qamar, R. Identification of contributing factors, microorganisms and antimicrobial resistance involved in the complication of diabetic foot ulcer treatment. Microb. Pathog. 2023, 184, 106363. [Google Scholar] [CrossRef]
- Konaklieva, M.I.; Plotkin, B.J. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics 2024, 13, 929. [Google Scholar] [CrossRef]
- Benderdour, M.; Hess, K.; Gadet, M.D.; Dousset, B.; Nabet, P.; Belleville, F. Effect of boric acid solution on cartilage metabolism. Biochem. Biophys. Res. Commun. 1997, 234, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Benderdour, M.; Hess, K.; Dzondo-Gadet, M.; Nabet, P.; Belleville, F.; Dousset, B. Boron modulates extracellular matrix and tnfα synthesis in human fibroblasts. Biochem. Biophys. Res. Commun. 1998, 246, 746–751. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, G.; Huang, J.; Wu, J. Novel Glucose-Responsive Antioxidant Hybrid Hydrogel for Enhanced Diabetic Wound Repair. ACS Appl. Mater. Interfaces 2022, 14, 7680–7689. [Google Scholar] [CrossRef]
- Farfán-García, E.D.; Kilic, A.; García-Machorro, J.; Cuevas-Galindo, M.E.; Rubio-Velazquez, B.A.; García-Coronel, I.H.; Estevez-Fregoso, E.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Chapter 58: Antimicrobial (Viral, Bacterial, Fungal, and Parasitic) Mechanisms of Action of Boron-Containing Compounds. In Viral, Parasitic, Bacterial, and Fungal Infections; Academic Press: Cambridge, MA, USA, 2023; pp. 733–754. [Google Scholar]
- Kilic, A.; Alshhab, A.; Okumus, V. Preparation and spectroscopic properties of bioactive 1, 2, 3-triazole-linked boronate esters for use in antioxidant, antimicrobial, and DNA binding studies. J. Organomet. Chem. 2023, 993, 122707. [Google Scholar] [CrossRef]
- Celebi, O.; Celebi, D.; Baser, S.; Aydın, E.; Rakıcı, E.; Uğraş, S.; Yoldaş, P.A.; Baygutalp, N.K.; El-Aty, A.M.A. Antibacterial activity of boron compounds against biofilm-forming pathogens. Biol. Trace Elem. Res. 2024, 202, 346–359. [Google Scholar] [CrossRef]
- Fontaine, F.; Héquet, A.; Voisin-Chiret, A.-S.; Bouillon, A.; Lesnard, A.; Cresteil, T.; Jolivalt, C.; Rault, S. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem. 2015, 95, 185–198. [Google Scholar] [CrossRef]
- Scott, R.S.; Veinot, A.J.; Stack, D.L.; Gormley, P.T.; Khuong, B.N.; Vogels, C.M.; Masuda, J.D.; Baerlocher, F.J.; MacCormack, T.J.; Westcott, S.A. Synthesis, reactivity, and antimicrobial properties of boron-containing 4-ethyl-3-thiosemicarbazide derivatives. Can. J. Chem. 2018, 96, 906–911. [Google Scholar] [CrossRef]
- Kilic, A.; Söylemez, R.; Okumuş, V. Design, spectroscopic properties and effects of novel catechol spiroborates derived from Schiff bases in the antioxidant, antibacterial and DNA binding activity. J. Organomet. Chem. 2022, 960, 122228. [Google Scholar] [CrossRef]
- Liu, H.; Qin, S.; Zhang, H.; Chen, Z.; Zhao, Y.; Liu, J.; Deng, Y.; Liu, M.; Chen, W.; Wang, Z.; et al. Silk Sericin-based ROS-Responsive Oxygen Generating Microneedle Platform Promotes Angiogenesis and Decreases Inflammation for Scarless Diabetic Wound Healing. Adv. Funct. Mater. 2024, 35, 2404461. [Google Scholar] [CrossRef]
- Manju, S.; Antony, M.; Sreenivasan, K. Synthesis and evaluation of a hydrogel that binds glucose and releases ciprofloxacin. J. Mater. Sci. 2010, 45, 4006–4012. [Google Scholar] [CrossRef]
- Kumar, V.; Viviani, S.L.; Ismail, J.; Agarwal, S.; Bonomo, R.A.; Akker, F.v.D. Structural analysis of the boronic acid β-lactamase inhibitor vaborbactam binding to Pseudomonas aeruginosa penicillin-binding protein. PLoS ONE 2021, 16, e0258359. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Y.; Sun, Z.; Zhang, X.; Liu, M. Boric Acid-Functionalized Carbon Dots as a High-Performance Antibacterial Agent against Escherichia coli. Langmuir 2023, 39, 18302–18310. [Google Scholar] [CrossRef] [PubMed]
- Şahin, Y.; Çoban, E.P.; Özgener, H.; Bıyık, H.H.; Sevincek, R.; Aygün, M.; Gürbüz, B. Effects of diborolane containing Oxo/Amine compounds on clinically important bacteria and Candida species. J. Mol. Struct. 2024, 1304, 137618. [Google Scholar] [CrossRef]
- Takahashi, D.; Miura, T.; Toshima, K. Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone–boronic acid hybrids. Chem. Commun. 2012, 48, 7595–7597. [Google Scholar] [CrossRef]
- Degirmenci, U.; Kilic, A.; Söylemez, R.; Yildirim, M. Tetrahedral Boronate Ester as Regulators of Inflammation and Adhesion in ox-LDL Induced Atherosclerotic Model. Russ. J. Bioorg. Chem. 2024, 50, 106–115. [Google Scholar] [CrossRef]
- Kilic, A.; Savci, A.; Alan, Y.; Beyazsakal, L. The synthesis of novel boronate esters and N-Heterocyclic carbene (NHC)-stabilized boronate esters: Spectroscopy, antimicrobial and antioxidant studies. J. Organomet. Chem. 2020, 917, 121268. [Google Scholar] [CrossRef]
- Teixeira, I.D.; Carvalho, E.; Leal, E.C. Green Antimicrobials as Therapeutic Agents for Diabetic Foot Ulcers. Antibiotics 2023, 12, 467. [Google Scholar] [CrossRef]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Mehta, N.V.; Abhyankar, A.; Degani, M.S. Elemental exchange: Bioisosteric replacement of phosphorus by boron in drug design. Eur. J. Med. Chem. 2023, 260, 115761. [Google Scholar] [CrossRef]
- Whyte, G.F.; Vilar, R.; Woscholski, R. Molecular recognition with boronic acids—Applications in chemical biology. J. Chem. Biol. 2013, 6, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.B.; Mott, C.J.B. Interaction of boric acid and borates with carbohydrates and related substances. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1980, 76, 1991–2002. [Google Scholar] [CrossRef]
- Taylor, M.S. Catalysis Based on Reversible Covalent Interactions of Organoboron Compounds. Acc. Chem. Res. 2015, 48, 295–305. [Google Scholar] [CrossRef]
- Ghosh, T.; Das, A.K. Dynamic boronate esters cross-linked guanosine hydrogels: A promising biomaterial for emergent applications. Co-Ord. Chem. Rev. 2023, 488, 215170. [Google Scholar] [CrossRef]
- Gómez, Á.; García, M.C.B.; Barrueco, N.; Lucena-Campillo, M.A.; López-Lunar, E.; García-Díaz, B.; Vicario-De-La-Torre, M.; Escobar-Rodríguez, I.; Gil-Alegre, M.E. Physicochemical stability of bortezomib solutions for subcutaneous administration. Sci. Rep. 2024, 14, 8975. [Google Scholar] [CrossRef]
- Cho, S.; Hwang, S.Y.; Oh, D.X.; Park, J. Recent progress in self-healing polymers and hydrogels based on reversible dynamic B–O bonds: Boronic/boronate esters, borax, and benzoxaborole. J. Mater. Chem. A 2021, 9, 14630–14655. [Google Scholar] [CrossRef]
- Diaz, D.B.; Yudin, A.K. The versatility of boron in biological target engagement. Nat. Chem. 2017, 9, 731–742. [Google Scholar] [CrossRef]
- Babamiri, B.; Nikkhah, F.; Faraji, N.; Goli, R.; Moghaddam, N.V.; Rahimi, K. Diabetic foot ulcer: Successful healing with combination therapy, including surgical debridement, maggot therapy, and negative pressure wound therapy. Int. J. Surg. Case Rep. 2023, 110, 108695. [Google Scholar] [CrossRef]
- Gushiken, L.F.S.; Beserra, F.P.; Bastos, J.K.; Jackson, C.J.; Pellizzon, C.H. Cutaneous wound healing: An update from physiopathology to current therapies. Life 2021, 11, 665. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The role of oxidative stress and antioxidants in diabetic wound healing. Oxidative Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef] [PubMed]
- Sedighi-Pirsaraei, N.; Tamimi, A.; Khamaneh, F.S.; Dadras-Jeddi, S.; Javaheri, N. Boron in wound healing: A comprehensive investigation of its diverse mechanisms. Front. Bioeng. Biotechnol. 2024, 12, 1475584. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, N.; Ali, Z.; Batool, S.; ur Rehman, M.; Alamri, A.H.; Al Fatease, A.; Lahiq, A.A.; Alsharif, S.T.; ud Din, F. Improved wound care via novel dextran and boric acid loaded wound healing gel in excision mice wound model. J. Drug Deliv. Sci. Technol. 2025, 105, 106586. [Google Scholar] [CrossRef]
- Büyük, B.; Aydeğer, C.; Adalı, Y.; Eroğlu, H.A. The Effect of Topically Applied Boric Acid on Ephrin-Eph Pathway in Wound Treatment: An Experimental Study. Int. J. Low. Extrem. Wounds 2021, 23, 379–389. [Google Scholar] [CrossRef]
- Orhan, H.; Yilmaz, B. In Vitro Properties of Electrospun Composite Fibers Containing Boric Acid and Enhanced with Epidermal Growth Factor for Wound Dressing Applications. Fibers Polym. 2024, 25, 485–500. [Google Scholar] [CrossRef]
- Ni, S.; Zhang, K.; Zhao, X.; Wu, S.; Yan, M.; Sun, D.; Zhu, L.; Wu, W. Phenylboronic acid functionalized dextran loading curcumin as nano-therapeutics for promoting the bacteria-infected diabetic wound healing. Int. J. Biol. Macromol. 2024, 273 Pt 1, 133062. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, M.; Chai, L.; Chen, H.; Chen, D.; Li, Y.; Liu, H.; Wu, Y.; Yang, X.; He, L.; et al. Glucose-responsive, self-healing, wet adhesive and multi-biofunctional hydrogels for diabetic wound healing. Mater. Today Bio 2024, 27, 101159. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, H.; Sui, J.; Lin, H.; Cao, L. Rapid and Sensitive Fluorescence Detection of Staphylococcus aureus Based on Polyethyleneimine-Enhanced Boronate Affinity Isolation. Foods 2023, 12, 1366. [Google Scholar] [CrossRef]
- Yagi, T.; Wachino, J.-I.; Kurokawa, H.; Suzuki, S.; Yamane, K.; Doi, Y.; Shibata, N.; Kato, H.; Shibayama, K.; Arakawa, Y. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 2005, 43, 2551–2558. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Y.; Zhou, R.; Shen, T.; Zhang, D.; Guo, Z.; Zou, X. Boronic acid-assisted detection of bacterial pathogens: Applications and perspectives. Coord. Chem. Rev. 2024, 518, 216082. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Z.; Luo, J.; Wang, P.; Lu, G.; Pan, J. Engineered reversible adhesive biofoams for accelerated dermal wound healing: Intriguing multi-covalent phenylboronic acid/cis-diol interaction. Colloids Surf. B Biointerfaces 2023, 221, 112987. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano-Ursúa, M.A.; Martínez-Archundia, M.; Kilic, A.; Pérez-Capistran, T.; Hernández-Zamora, M.A.; López-Ramos, J.E.; Farfán-García, E.D. Formulations with Boric Acid or Aryl-Organoboron Compounds for Treating Diabetic Foot Ulcers. Sci. Pharm. 2025, 93, 14. https://doi.org/10.3390/scipharm93010014
Soriano-Ursúa MA, Martínez-Archundia M, Kilic A, Pérez-Capistran T, Hernández-Zamora MA, López-Ramos JE, Farfán-García ED. Formulations with Boric Acid or Aryl-Organoboron Compounds for Treating Diabetic Foot Ulcers. Scientia Pharmaceutica. 2025; 93(1):14. https://doi.org/10.3390/scipharm93010014
Chicago/Turabian StyleSoriano-Ursúa, Marvin A., Marlet Martínez-Archundia, Ahmet Kilic, Teresa Pérez-Capistran, Miriam A. Hernández-Zamora, Juan E. López-Ramos, and Eunice D. Farfán-García. 2025. "Formulations with Boric Acid or Aryl-Organoboron Compounds for Treating Diabetic Foot Ulcers" Scientia Pharmaceutica 93, no. 1: 14. https://doi.org/10.3390/scipharm93010014
APA StyleSoriano-Ursúa, M. A., Martínez-Archundia, M., Kilic, A., Pérez-Capistran, T., Hernández-Zamora, M. A., López-Ramos, J. E., & Farfán-García, E. D. (2025). Formulations with Boric Acid or Aryl-Organoboron Compounds for Treating Diabetic Foot Ulcers. Scientia Pharmaceutica, 93(1), 14. https://doi.org/10.3390/scipharm93010014