Phytochemical Analysis and In Vitro Antibiofilm Activity of Ethanolic Leaf Extract from Quercus alnifolia Poech Against Staphylococcus aureus
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Collection and Identification
2.3. Extraction of Plant Compounds
2.4. Antibacterial and Biofilm-Inhibitory Activity Testing
2.4.1. Antibacterial-Susceptibility Test (AST)—Broth Microdilution Assay
2.4.2. Antibiofilm Assay
2.4.3. Preformed Biofilm Reduction Assay
2.5. Liquid Chromatography–Mass Spectroscopy of Ethanolic Leaf Extracts of Q. alnifolia, Q. × campitica, Q. coccifera, and Q. infectoria
2.6. Statistics
3. Results
3.1. Q. alnifolia, Q. × campitica, Q. coccifera, and Q. infectoria Inhibit S. aureus Biofilm Formation
3.2. Q. alnifolia Extract Displays Activity Against Preformed S. aureus Biofilm
3.3. Liquid Chromatography–Mass Spectrometry (LC-MS) Analysis of Quercus alnifolia with Potent Antibiofilm Properties
4. Discussion
4.1. In Vitro Antibacterial and Antibiofilm Activities of the Quercus Ethanolic Leaf Extracts from Cyprus Against S. aureus
4.2. LC-MS Analysis of the Ethanolic Leaf Extract of Q. alnifolia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Tagliabue, A.; Rappuoli, R. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Front. Immunol. 2018, 9, 1068. [Google Scholar] [CrossRef]
- Sentenac, H.; Loyau, A.; Leflaive, J.; Schmeller, D.S. The significance of biofilms to human, animal, plant and ecosystem health. Funct. Ecol. 2021, 36, 294. [Google Scholar] [CrossRef]
- Flores-Vargas, G.; Bergsveinson, J.; Lawrence, J.R.; Korber, D.R. Environmental biofilms as reservoirs for antimicrobial resistance. Front. Microbiol. 2021, 12, 766242. [Google Scholar] [CrossRef]
- Gomes, M.P. The convergence of antibiotic contamination, resistance, and climate dynamics in freshwater ecosystems. Water 2024, 16, 2606. [Google Scholar] [CrossRef]
- Balta, I.; Lemon, J.; Gadaj, A.; Cretescu, I.; Stef, D.; Pet, I.; Stef, L.; McCleery, D.; Douglas, A.; Corcionivoschi, N. The interplay between antimicrobial resistance, heavy metal pollution, and the role of microplastics. Front. Microbiol. 2025, 16, 1550587. [Google Scholar] [CrossRef]
- Silva, E.; Teixeira, J.A.; Pereira, M.O.; Rocha, C.M.; Sousa, A.M. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine 2023, 119, 154973. [Google Scholar] [CrossRef] [PubMed]
- Manner, S.; Skogman, M.; Goeres, D.; Vuorela, P.; Fallarero, A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci. 2013, 14, 19434–19451. [Google Scholar] [CrossRef] [PubMed]
- Veiko, A.G.; Olchowik-Grabarek, E.; Sekowski, S.; Roszkowska, A.; Lapshina, E.A.; Dobrzynska, I.; Zamaraeva, M.; Zavodnik, I.B. Antimicrobial activity of quercetin, naringenin and catechin: Flavonoids inhibit Staphylococcus aureus-induced hemolysis and modify membranes of bacteria and erythrocytes. Molecules 2023, 28, 1252. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Walker, J.N.; Horswill, A.R. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma. Front. Cell. Infect. Microb. 2012, 2, 39. [Google Scholar] [CrossRef]
- Duran Ramirez, J.M.; Gomez, J.; Obernuefemann, C.L.; Gualberto, N.C.; Walker, J.N. Semi-quantitative assay to measure urease activity by urinary catheter-associated uropathogens. Front. Cell. Infect. Microbiol. 2022, 12, 859093. [Google Scholar] [CrossRef] [PubMed]
- Duran Ramirez, J.M.; Gomez, J.; Hanson, B.M.; Isa, T.; Myckatyn, T.M.; Walker, J.N. Staphylococcus aureus breast implant infection isolates display recalcitrance to antibiotic pocket irrigants. Microbiol. Spect. 2023, 11, 2884. [Google Scholar] [CrossRef]
- Alarjani, K.M.; Skalicky, M. Antimicrobial resistance profile of Staphylococcus aureus and its in vitro potential inhibition efficiency. J. Inf. Public Health 2021, 14, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Kincses, A.; Ghazal, T.S.A.; Veres, K.; Spengler, G.; Hohmann, J. Phenolic compounds from Origanum majorana with biofilm-inhibitory activity against methicillin-resistant Staphylococcus aureus and Escherichia coli strains. Pharm. Biol. 2025, 63, 402–410. [Google Scholar] [CrossRef]
- Mayyas, A.; Al-Samydai, A.; Al-Karablieh, N.; Zalloum, W.A.; Al-Tawalbeh, D.; Al-Mamoori, F.; Amr, R.A.; Al Nsairat, H.; Carradori, S.; Al-Halaseh, L.K.; et al. A phytotherapeutic approach to hinder the resistance against clindamycin by MRSA: In vitro and in silico studies. Future Sci. OA 2025, 1, 2458438. [Google Scholar] [CrossRef]
- Buder, C.; Meemken, D.; Fürstenberg, R.; Langforth, S.; Kirse, A.; Langkabel, N. Drinking pipes and nipple drinkers in pig abattoir lairage pens—A source of zoonotic pathogens as a hazard to meat safety. Microorganisms 2023, 11, 2554. [Google Scholar] [CrossRef]
- Pizzi, F.; Peters, F.; Sorribes, E.; Marín-Beltrán, I.; Romera-Castillo, C.; Grau, J.; Rahmani, M.; Jofre, L.; Capuano, F. Modulation of biofilm growth by shear and fluctuations in turbulent environments. Sci. Rep. 2025, 15, 12460. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.A.; Schou, C.; Mokhtar, A.B.; Karanis, P.; Gad, S.E.M. Blastocystis species growth inhibition in vitro by plant extracts. Microb. Pathog. 2024, 196, 106970. [Google Scholar] [CrossRef]
- Schou, C.; Mukavi, J.; Sendker, J.; Miliotou, A.; Christodoulou, V.; Sarigiannis, Y.; Jovanovic, A.; Schmidt, T.J.; Karanis, P. Antileishmanial activity of Ptilostemon chamaepeuce subsp. cyprius. Microb. Pathog. 2025, 202, 107441. [Google Scholar] [CrossRef]
- Schou, C.; Kolören, Z.; Sendker, J.; Sarigiannis, Y.; Jovanovic, A.; Karanis, P. Odontites linkii subsp. cyprius Ethanolic Extract Indicated In Vitro Anti-Acanthamoeba Effect. Microorganisms 2024, 12, 2303. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, H.J.; Isbilen, O.; Volkan, E.; Sariyar, G. Alkaloid profiling and antimicrobial activities of Papaver glaucum and P. decaisnei. BMC Res. Notes 2021, 14, 348. [Google Scholar] [CrossRef] [PubMed]
- Ozbil, E.; Ilktac, M.; Ogmen, S.; Isbilen, O.; Ramirez, J.M.D.; Gomez, J.; Walker, J.N.; Volkan, E. In vitro antibacterial, antibiofilm activities, and phytochemical properties of Posidonia oceanica (L.) Delile: An endemic Mediterranean seagrass. Heliyon 2024, 10, e35592. [Google Scholar] [CrossRef] [PubMed]
- Taib, M.; Rezzak, Y.; Bouyazza, L.; Lyoussi, B. Medicinal uses, phytochemistry, and pharmacological activities of Quercus species. Evid.-Based Complement. Altern. Med. 2020, 2020, 1920683. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
- Sionov, R.V.; Steinberg, D. Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria. Microorganisms 2022, 10, 1239. [Google Scholar] [CrossRef]
- Von Eiff, C.; Jansen, B.; Kohnen, W.; Becker, K. Infections associated with medical devices: Pathogenesis, management and prophylaxis. Drugs 2005, 65, 179–214. [Google Scholar] [CrossRef]
- Pecorini, G.; Ferraro, E.; Puppi, D. Polymeric systems for the controlled release of flavonoids. Pharmaceutics 2023, 15, 628. [Google Scholar] [CrossRef]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.; Shirtliff, M.E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef]
- Cordoba, A.; Satué, M.; Gómez-Florit, M.; Hierro-Oliva, M.; Petzold, C.; Lyngstadaas, S.P.; González-Martín, M.L.; Monjo, M.; Ramis, J.M. Flavonoid-modified surfaces: Multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Adv. Healthc. Mat. 2015, 4, 540–549. [Google Scholar] [CrossRef]
- Dey, S.; Singh, A.K.; Smita, S.S.; Biswas, A.; Kumar, S. Development of Quercetin-loaded polyvinyl-alcohol/gelatin nanofibrous coating over Ti–6Al–4V bone implant with improved antibacterial and bioactive characteristics. J. Mater. Sci. 2024, 59, 11799–11816. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytoch.Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J. Med. Microbiol. 2015, 64, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, G.; Alangaden, G.; Bardossy, A.C. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr. Infect. Dis. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Cruz, B.G.; Dos Santos, H.S.; Bandeira, P.N.; Rodrigues, T.H.S.; Matos, M.G.C.; Nascimento, M.F.; de Carvalho, G.G.; Braz-Filho, R.; Teixeira, A.M.; Tintino, S.R. Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6′′-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis müll. Microb. Pathog. 2020, 143, 104144. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.; Ross, K.E.; Brown, M.H.; Whiley, H. Water as a source of antimicrobial resistance and healthcare-associated infections. Pathogens 2020, 9, 667. [Google Scholar] [CrossRef]
- Coyotl-Martinez, E.; Hernández-Rivera, J.A.; Parra-Suarez, J.L.; Reyes-Carmona, S.R.; Carrasco-Carballo, A. Phytochemical Profile, Antioxidant and Antimicrobial Activity of Two Species of Oak: Quercus sartorii and Quercus rysophylla. Appl. Biosci. 2025, 4, 13. [Google Scholar] [CrossRef]
- Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Tech. 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
- Amin, M.U.; Khurram, M.; Khattak, B.; Khan, J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Altern. Med. 2015, 15, 59. [Google Scholar] [CrossRef]
- Vikram, A.; Jayaprakasha, G.K.; Jesudhasan, P.R.; Pillai, S.D.; Patil, B.S. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol. 2010, 109, 515–527. [Google Scholar] [CrossRef]
- Abreu, A.C.; McBain, A.J.; Simões, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Kaihatsu, K.; Nishino, K.; Ogawa, M.; Kato, N.; Yamaguchi, A. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Front. Microbiol. 2012, 3, 53. [Google Scholar] [CrossRef] [PubMed]
- Escandón, R.A.; Del Campo, M.; López-Solis, R.; Obreque-Slier, E.; Toledo, H. Antibacterial effect of kaempferol and (−)-epicatechin on Helicobacter pylori. Eur. Food Res. Technol. 2016, 242, 1495–1502. [Google Scholar] [CrossRef]
- HighChem LLC. mzCloud Advanced Mass Spectral Database. 2023. Available online: https://www.mzcloud.org/ (accessed on 15 October 2024).
- Nishimura, H.; Nonaka, G.; Nishioka, I. Tannins and Related Compounds. XX. Two New Ellagitannins Containing a Proto-quercitol Core from Quercus stenophylla MAKINO.(4). Chem. Pharmaceutic. Bull. 1984, 32, 1750–1753. Available online: https://www.jstage.jst.go.jp/article/cpb1958/32/5/32_5_1750/_pdf/-char/en (accessed on 15 October 2024). [CrossRef]
- Romussi, G.; Bignardi, G.; Pizza, C.; De Tommasi, N. Constituents of cupuliferae, XIII: New and revised structures of acylated flavonoids from Quercus suber L. Arch. Pharm. 1991, 324, 519–524. [Google Scholar] [CrossRef]
- Romussi, G.; Caviglioli, G.; Pizza, C.; De Tommasi, N. Constituents of Cupuliferae, XVII: Triterpene Saponins and Flavonoids from Quercus laurifolia Michx. Arch. Pharm. 1993, 326, 525–528. [Google Scholar] [CrossRef]
- Romussi, G.; Parodi, B.; Pizza, C.; De Tommasi, N. Inhaltsstoffe von Fagaceae (Cupuliferae), 19. Mitt.: Triterpensaponine und Acylflavonoide aus Quercus robur var. stenocarpa Beck. Arch. Pharm. Pharm. Med. Chem. 1994, 327, 643–645. [Google Scholar] [CrossRef]
- Rutz, A.; Sorokina, M.; Galgonek, J.; Mietchen, D.; Willighagen, E.; Gaudry, A.; Graham, J.G.; Stephan, R.; Page, R.; Vondrášek, J. The LOTUS initiative for open knowledge management in natural products research. eLife 2022, 11, e70780. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
Percent Biofilm Inhibition (%) | |||||
---|---|---|---|---|---|
0.078 mg/mL | 0.156 mg/mL | 0.3125 mg/mL | 0.625 mg/mL | 1.25 mg/mL | |
Q. alnifolia | 17 ± 8.3 | 69 ± 21.2 | 74 ± 2.8 | 81 ± 9.1 | 89 ± 4.4 |
Q. campitica | 54 ± 6.1 | 70 ± 7.2 | 82 ± 2.8 | 89 ± 3.1 | 100 ± 0.0 |
Q. coccifera | 8 ± 0.3 | 18 ± 1.9 | 32 ± 11.2 | 21 ± 1.9 | 37 ± 1.6 |
Q. infectoria | 17 ± 3.9 | 18 ± 2.8 | 16 ± 2.6 | 24 ± 3.9 | 46 ± 5.8 |
Gallic acid | 32 ± 5.6 (0.05 mg/mL) | ||||
Quercetin | 55 ± 11.0 (0.05 mg/mL) | ||||
Gentamicin | 49 ± 1.4 (0.02 mg/mL) |
Compound No. | tR/min | m/z [M + H]+ | Ion Formula | Err/mDa | mΣ | MS2 (25 eV) | Tentative Assignment |
---|---|---|---|---|---|---|---|
1 | 3.88 | 291.0884 | [C15H15O6]+ | −2.1 | 23.7 | 207, 189, 179, 165, 161, 147, 139, 123 | (Epi)catechin |
2 | 4.60 | 387.2010 | [C19H31O8]+ | −0.3 | 26.3 | 225, 207 | Corchoionoside C or optical isomer |
3 | 4.87 | 769.0907 | [C34H25O21]+ | −2.4 | 21.9 | 599, 447, 429, 321, 303, 277, 261, 233, 153, 145, 127 | Bis-hexahydroxydiphenoly- proto-quercitol |
4 | 4.97 | 619.0950 | [C27H23O17]+ | −2.0 | 23.9 | 449, 315, 303, 297, 279, 261, 237, 153, 145, 127 | 5-O-galloyl-3,4-(S)-hexahydroxydiphenoyl proto-quercitol |
5 | 5.03 | 617.1146 | [C28H25O16]+ | 0.9 | 20.5 | 449, 345, 315, 303, 297, 279, 237, 171, 153, 127 | Quercetin (galloyl-hexoside) |
6 | 5.05 | 611.1578 | [C27H31O16]+ | −2.8 | 22.4 | 465, 303 | Quercetin (desoxyhexosyl- hexoside) |
7 | 5.15 | 465.1007 | [C21H21O12]+ | −2.0 | 27.7 | 303 | Quercetin hexoside |
8 | 5.19 | 771.1048 | [C34H27O21]+ | −0.8 | 9.2 | 431, 305, 279, 261, 233, 153 | Hexahydroxydiphenoyl-digalloyl-proto-quercitol |
9a | 5.51 | 479.1177 | [C22H23O12]+ | −0.7 | 22.1 | 317, 127 | Isorhamnetin hexoside |
9b | 5.51 | 371.2048 | [C19H31O7]+ | −1.6 | 23.5 | 209, 191, 173, 149, 137, 133, 121, 107 | 3-Oxo-α-ionol glucoside or optical isomer |
10 | 5.66 | 373.2202 | [C19H33O7]+ | 1.9 | 10.1 | 211, 193, 175, 165, 151, 135, 119, 109, 95 | Byzantioside B (blumenol C glucoside) or optical isomer |
11 | 6.24 | 595.1444 | [C30H27O13]+ | 0.3 | 35.5 | 309, 287, 147 | Kaempferol (coumaroyl-hexoside) |
12 | 6.36 | 595.1434 | [C30H27O13]+ | 1.2 | 14.0 | 309, 287, 147 | Kaempferol (coumaroyl-hexoside) |
13 | 7.14 | 741.1864 | [C39H33O15]+ | 5.0 | 37.6 | 455, 437, 287, 273, 255, 147 | Kaempferol (dicoumaroyl-hexoside) |
14 | 7.54 | 799.1903 | [C41H35O17]+ | 3.4 | 21.0 | 635, 513, 497, 437, 351, 333, 303, 287, 273, 163, 147 | Quercetin (diacetyl-dicoumaroyl-hexoside) |
15 | 7.75 | 783.1965 | [C41H35O16]+ | −4.6 | 27.0 | 619, 497, 437, 351, 333, 287, 273, 255, 147 | Kaempferol (acetyl-dicoumaroyl-hexoside) |
16 | 8.06 | 841.2036 | [C43H37O18]+ | 6.2 | 26.3 | 695, 677, 555, 539, 479, 419, 393, 303, 293, 287, 273, 163, 147 | Quercetin (diacetyl-dicoumaroyl-hexoside) |
17 | 8.28 | 825.2070 | [C43H37O17]+ | 4.5 | 25.3 | 765, 679, 661, 539, 479, 419, 393, 375, 333, 315, 293, 287, 273, 255, 147 | Kaempferol (diacetyl-dicoumaroyl-hexoside) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkan, E.; Schou, C.; Sendker, J.; Karanis, P. Phytochemical Analysis and In Vitro Antibiofilm Activity of Ethanolic Leaf Extract from Quercus alnifolia Poech Against Staphylococcus aureus. Sci. Pharm. 2025, 93, 39. https://doi.org/10.3390/scipharm93030039
Volkan E, Schou C, Sendker J, Karanis P. Phytochemical Analysis and In Vitro Antibiofilm Activity of Ethanolic Leaf Extract from Quercus alnifolia Poech Against Staphylococcus aureus. Scientia Pharmaceutica. 2025; 93(3):39. https://doi.org/10.3390/scipharm93030039
Chicago/Turabian StyleVolkan, Ender, Chad Schou, Jandirk Sendker, and Panagiotis Karanis. 2025. "Phytochemical Analysis and In Vitro Antibiofilm Activity of Ethanolic Leaf Extract from Quercus alnifolia Poech Against Staphylococcus aureus" Scientia Pharmaceutica 93, no. 3: 39. https://doi.org/10.3390/scipharm93030039
APA StyleVolkan, E., Schou, C., Sendker, J., & Karanis, P. (2025). Phytochemical Analysis and In Vitro Antibiofilm Activity of Ethanolic Leaf Extract from Quercus alnifolia Poech Against Staphylococcus aureus. Scientia Pharmaceutica, 93(3), 39. https://doi.org/10.3390/scipharm93030039