The Fingerprints of Periodic Electric Fields on Line Shapes Emitted in Plasmas
Abstract
:1. Introduction
2. Computer Simulation for the Plasma Particles
3. Line Shape Calculations
4. Results
4.1. Various Possible Calculations
4.2. Lyman-α (Ly-α)
4.3. Balmer-α (Hα)
4.4. Lyman-β (Ly-β)
4.5. Balmer-β (Hβ)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blokhintsev, D. Theory of the Stark effect in a time-dependent field. Phys. Z. Sow. Union 1933, 4, 501–515. [Google Scholar]
- Baranger, M.; Mozer, B. Light as a plasma probe. Phys. Rev. 1961, 123, 25–28. [Google Scholar]
- Gallagher, C.; Levine, M. Observation of Hβ satellites in the presence of turbulent electric fields. Phys. Rev. Lett. 1971, 27, 1693–1696. [Google Scholar] [CrossRef]
- Rutgers, W.; de Kluiver, Z. The dynamic Stark-effect in a turbulent hydrogen plasma. Z. Naturforsch. 1974, 29, 42–44. [Google Scholar]
- Nee, T.; Griem, H. Measurement of hydrogen n-α-line Stark profiles in a turbulent plasma. Phys. Rev. A 1976, 14, 1853–1868. [Google Scholar]
- Griem, H. Spectral Line Broadening by Plasmas; Academic Press: New York, NY, USA, 1974; ISBN 0-12-302850-7. [Google Scholar]
- Lisitsa, V. Atoms in Plasmas; Springer: Berlin, Germany, 1994; ISBN 3-540-57580-4. [Google Scholar]
- Oks, E. Plasma Spectroscopy; Springer: Berlin, Germany, 1995; ISBN 3-540-54100-4. [Google Scholar]
- Sobczuk, F.; Dzierzega, K.; Stambulchik, E. Plasma Stark effect of He II Paschen-α: Resolution of the disagreement between experiment and theory. Phys. Rev. E 2022, 106, L023202. [Google Scholar]
- Griem, H. Principles of Plasma Spectroscopy; Cambridge University Press: Cambridge, UK, 1997; ISBN 0-521-45504-9. [Google Scholar]
- Stamm, R.; Voslamber, D. On the role of ion dynamics in the Stark broadening of hydrogen lines. J. Quant. Spectrosc. Radiat. Transf. 1979, 22, 599–609. [Google Scholar]
- Stambulchik, E.; Maron, Y. Plasma line broadening and computer simulations: A mini-review. High Energy Density Phys. 2010, 6, 9–14. [Google Scholar]
- Ferri, S.; Calisti, A.; Mossé, C.; Rosato, J.; Talin, B.; Alexiou, S.; Gigosos, M.; Gonzales, M.; Gonzales-Herrero, D.; Lara, N.; et al. Ion dynamics effect on Stark-broadened line shapes: A cross-comparison of various models. Atoms 2014, 2, 299–318. [Google Scholar]
- Seidel, J.; Stamm, R. Effects of radiator motion on plasma-broadened hydrogen Lyman-β. J. Quant. Spectrosc. Radiat. Transf. 1982, 27, 499–503. [Google Scholar]
- Gomez, T.; Nagayama, T.; Cho, P.; Zammit, M.; Fontes, C.; Kilcrease, D.; Bray, I.; Hubeny, I.; Dunlap, B.; Montgomery, M.; et al. All-order full-Coulomb quantum spectral line shape calculations. Phys. Rev. Lett. 2021, 127, 235001. [Google Scholar]
- Stambulchik, E.; Iglesias, C. Full radiator-perturber interaction in computer simulations of hydrogenic spectral line broadening by plasmas. Phys. Rev. E 2022, 105, 055210. [Google Scholar]
- Stamm, R.; Talin, B.; Pollock, E.; Iglesias, C. Ion-dynamic effects on the line shapes of hydrogenic emitters in plasmas. Phys. Rev. A 1986, 34, 4144–4152. [Google Scholar]
- Stambulchik, E.; Maron, Y. A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 730–749. [Google Scholar]
- Gigosos, M.; Gonzalez-Herrero, D.; Lara, N.; Florido, R.; Calisti, A.; Ferri, S.; Talin, B. Classical molecular dynamics simulations of hydrogen plasmas and development of an analytical statistical model for computational validity assessment. Phys. Rev. E 2018, 98, 033307. [Google Scholar]
- Oks, E.; Sholin, G. Stark profiles of hydrogen spectral lines in a plasma with Langmuir turbulence. Sov. Phys. JETP 1975, 41, 482–488. [Google Scholar]
- Griem, H.; Kolb, A.; Shen, K. Stark broadening of hydrogen lines in a plasma. Phys. Rev. 1959, 116, 4–16. [Google Scholar]
- Koonin, S. Computational Physics; Addison Wesley: Redwood City, CA, USA, 1986; ISBN 0-201-12279-0. [Google Scholar]
- Stambulchik, E.; Alexiou, S.; Griem, H.; Kepple, P. Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas. Phys. Rev. E 2007, 75, 016401. [Google Scholar]
- Rosato, J.; Marandet, Y.; Stamm, R. Quantifying the statistical noise in computer simulations of Stark broadening. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 107002. [Google Scholar]
- Robinson, P.; Newman, D. Strong Langmuir turbulence generated by electron beams: Electric-field distributions and electron scattering. Phys. Fluids B 1990, 2, 3120–3133. [Google Scholar]
- Peyrusse, O. Spectral line-shape calculations for multielectron ions in hot plasmas submitted to a strong oscillating electric field. Phys. Rev. A 2009, 79, 013411. [Google Scholar]
- Stambulchik, E.; Demura, A. Dynamic Stark broadening of Lyman-α. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 035701. [Google Scholar] [CrossRef]
- Oks, E. Enhancement of X-ray lasers by narrowing of the lasing spectral line due to a dressing by optical laser radiation. J. Phys. B At. Mol. Opt. Phys. 2000, 33, L801–L805. [Google Scholar]
- Alexiou, S. X-ray laser line narrowing: New developments. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 139–146. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannachi, I.; Stamm, R. The Fingerprints of Periodic Electric Fields on Line Shapes Emitted in Plasmas. Atoms 2023, 11, 128. https://doi.org/10.3390/atoms11100128
Hannachi I, Stamm R. The Fingerprints of Periodic Electric Fields on Line Shapes Emitted in Plasmas. Atoms. 2023; 11(10):128. https://doi.org/10.3390/atoms11100128
Chicago/Turabian StyleHannachi, Ibtissem, and Roland Stamm. 2023. "The Fingerprints of Periodic Electric Fields on Line Shapes Emitted in Plasmas" Atoms 11, no. 10: 128. https://doi.org/10.3390/atoms11100128
APA StyleHannachi, I., & Stamm, R. (2023). The Fingerprints of Periodic Electric Fields on Line Shapes Emitted in Plasmas. Atoms, 11(10), 128. https://doi.org/10.3390/atoms11100128