Proton and Electron Irradiations of CH4:H2O Mixed Ices
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGuire, B.A. 2021 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 2022, 259, 30. [Google Scholar] [CrossRef]
- Lacy, J.H.; Carr, J.S.; Evans, N.J.; Baas, F.; Achtermann, J.M.; Arens, J.F. Discovery of interstellar methane: Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. Astrophys. J. 1991, 376, 556–560. [Google Scholar] [CrossRef]
- Qasim, D.; Fedoseev, G.; Chuang, K.-J.; He, J.; Ioppolo, S.; van Dishoeck, E.F.; Linnartz, H. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 2020, 4, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Öberg, K.I.; Boogert, A.C.A.; Pontoppidan, K.M.; Blake, G.A.; Evans, N.J.; Lahuis, F.; van Dishoeck, E.F. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4. Astrophys. J. 2008, 678, 1032. [Google Scholar] [CrossRef] [Green Version]
- Kawara, K.; Gregory, B.; Yamamoto, T.; Shibai, H. Infrared spectroscopic observation of methane in comet P/Halley. Astron. Astrophys. 1988, 207, 174–181. [Google Scholar]
- Schuhmann, M.; Altwegg, K.; Balsiger, H.; Berthelier, J.-J.; De Keyser, J.; Fiethe, B.; Fuselier, S.A.; Gasc, S.; Gombosi, T.I.; Hänni, N.; et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astron. Astrophys. 2019, 630, A31. [Google Scholar] [CrossRef] [Green Version]
- Rubin, M.; Bekaert, D.V.; Broadley, M.W.; Drozdovskaya, M.N.; Wampfler, S. Volatile species in comet 67P/Churyumov-Gerasimenko: Investigating the link from the ISM to the terrestrial planets. ACS Earth Space Chem. 2019, 3, 1792–1811. [Google Scholar] [CrossRef] [Green Version]
- Lunine, J.I.; Atreya, S.K. The methane cycle on Titan. Nat. Geosci. 2008, 1, 159–164. [Google Scholar] [CrossRef]
- Bertrand, T.; Forget, F.; Schmitt, B.; White, O.L.; Grundy, W.M. Equatorial mountains on Pluto are covered by methane frosts resulting from a unique atmospheric process. Nat. Commun. 2020, 11, 5056. [Google Scholar] [CrossRef]
- Mason, N.J.; Nair, B.; Jheeta, S.; Szymańska, E. Electron induced chemistry: A new frontier in astrochemistry. Faraday Discuss. 2014, 168, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Boyer, M.C.; Rivas, N.; Tran, A.A.; Verish, C.A.; Arumainayagam, C.R. The role of low-energy (<20 eV) electrons in astrochemistry. Surf. Sci. 2016, 652, 26–32. [Google Scholar]
- Baratta, G.A.; Leto, G.; Palumbo, M.E. A comparison of ion irradiation and UV photolysis of CH4 and CH3OH. Astron. Astrophys. 2002, 384, 343–349. [Google Scholar] [CrossRef]
- Baratta, G.A.; Domingo, M.; Ferini, G.; Leto, G.; Palumbo, M.E.; Satorre, M.A.; Strazzulla, G. Ion irradiation of CH4-containing icy mixtures. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atom. 2003, 209, 283–287. [Google Scholar] [CrossRef]
- Bennett, C.J.; Jamieson, C.S.; Osamura, Y.; Kaiser, R.I. Laboratory studies on the irradiation of methane in interstellar, cometary, and Solar System ices. Astrophys. J. 2006, 653, 792–811. [Google Scholar] [CrossRef]
- Mejía, C.F.; de Barros, A.L.F.; Bordalo, V.; da Silveira, E.F.; Boduch, P.; Domaracka, A.; Rothard, H. Cosmic ray-ice interaction studied by radiolysis of 15 K methane ice with MeV O, Fe and Zn ions. Mon. Not. R. Astron. Soc. 2013, 433, 2368–2379. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, F.A.; Pilling, S.; Rocha, W.R.M.; Rothard, H.; Boduch, P.; Ding, J.J. Ion irradiation of pure and amorphous CH4 ice relevant for astrophysical environments. Phys. Chem. Chem. Phys. 2017, 19, 12845–12856. [Google Scholar] [CrossRef]
- Turner, A.M.; Abplanalp, M.J.; Kaiser, R.I. Probing the carbon-phosphorus bond coupling in low-temperature phosphine (PH3)-methane (CH4) interstellar ice analogues. Astrophys. J. 2016, 819, 97. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Turner, A.M.; Abplanalp, M.J.; Kaiser, R.I. Formation and high-order carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4). Astrophys. J. Suppl. Ser. 2018, 234, 15. [Google Scholar] [CrossRef] [Green Version]
- Esmaili, S.; Bass, A.D.; Cloutier, P.; Sanche, L.; Huels, M.A. Glycine formation in CO2:CH4:NH3 ices induced by 0–70 eV electrons. J. Chem. Phys. 2018, 148, 164702. [Google Scholar] [CrossRef]
- van Dishoeck, E.F.; Herbst, E.; Neufeld, D.A. Interstellar water chemistry: From laboratory to observations. Chem. Rev. 2013, 113, 9043–9085. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.H.; Hudson, R.L. Infrared study of ion-irradiated water-ice mixtures with hydrocarbons relevant to comets. Icarus 1998, 135, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Wada, A.; Mochizuki, N.; Hiraoka, K. Methanol formation from electron-irradiated mixed H2O/CH4 ice at 10 K. Astrophys. J. 2006, 644, 300–306. [Google Scholar] [CrossRef]
- Mejía, C.F.; de Barros, A.L.F.; Rothard, H.; Boduch, P.; da Silveira, E.F. Radiolysis of ices by cosmic rays: CH4 and H2O ices mixtures irradiated by 40 MeV 58Ni11+ ions. Astrophys. J. 2020, 894, 132. [Google Scholar] [CrossRef]
- Krim, L.; Jonusas, M. VUV photolysis of CH4-H2O mixture in methane-rich ices: Formation of large complex organic molecules in astronomical environments. Low Temp. Phys. 2019, 45, 606. [Google Scholar]
- Moore, M.H.; Hudson, R.L. Infrared study of ion-irradiated N2 dominated ices relevant to Triton and Pluto: Formation of HCN and HNC. Icarus 2003, 161, 486–500. [Google Scholar] [CrossRef]
- Herczku, P.; Mifsud, D.V.; Ioppolo, S.; Juhász, Z.; Kaňuchová, Z.; Kovács, S.T.S.; Traspas Muiña, A.; Hailey, P.A.; Rajta, I.; Vajda, I.; et al. The Ice Chamber for Astrophysics-Astrochemistry (ICA): A new experimental facility for ion impact studies of astrophysical ice analogues. Rev. Sci. Instrum. 2021, 92, 084501. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, D.V.; Juhász, Z.; Herczku, P.; Kovács, S.T.S.; Ioppolo, S.; Kaňuchová, Z.; Czentye, M.; Hailey, P.A.; Traspas Muiña, A.; Mason, N.J.; et al. Electron irradiation and thermal chemistry studies of interstellar and planetary ice analogues at the ICA astrochemistry facility. Eur. Phys. J. D 2021, 75, 182. [Google Scholar] [CrossRef]
- Rajta, I.; Vajda, I.; Gyürky, G.; Csedreki, L.; Kiss, Á.Z.; Biri, S.; van Oosterhout, H.A.P.; Podaru, N.C.; Mous, D.J.W. Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary. Nucl. Instrum. Methods Phys. Res. A 2018, 880, 125–130. [Google Scholar] [CrossRef]
- Biri, S.; Vajda, I.; Hajdu, P.; Rácz, R.; Csik, A.; Kormány, Z.; Perduk, Z.; Kocsis, F.; Rajta, I. The Atomki accelerator center. Eur. Phys. J. Plus 2021, 136, 247. [Google Scholar] [CrossRef]
- Gerakines, P.A.; Hudson, R.L. A modified and open-source computational package for the determination of infrared optical constants relevant to astrophysics. Astrophys. J. 2020, 901, 52. [Google Scholar] [CrossRef]
- Bouilloud, M.; Fray, N.; Bénilan, Y.; Cottin, H.; Gazeau, M.-C.; Jolly, A. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH, and H2CO. Mon. Not. R. Astron. Soc. 2015, 451, 2145–2160. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atom. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Mifsud, D.V.; Hailey, P.A.; Herczku, P.; Juhász, Z.; Kovács, S.T.S.; Sulik, B.; Ioppolo, B.; Kaňuchová, Z.; McCullough, R.W.; Paripás, B.; et al. Laboratory experiments on the radiation astrochemistry of water ice phases. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 2022, 76, 87. [Google Scholar] [CrossRef]
- Palumbo, M.E. Formation of compact solid water after ion irradiation at 15 K. Astron. Astrophys. 2006, 453, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Raut, U.; Teolis, B.D.; Loeffler, M.J.; Vidal, R.A.; Famá, M.; Baragiola, R.A. Compaction of microporous amorphous solid water by ion irradiation. J. Chem. Phys. 2007, 126, 244511. [Google Scholar] [CrossRef]
- Dartois, E.; Ding, J.J.; de Barros, A.L.F.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Godard, M.; Lv, X.Y.; Mejía Guamán, C.F.; et al. Swift heavy ion irradiation of water ice from MeV to GeV energies: Approaching true cosmic ray compaction. Astron. Astrophys. 2013, 557, A97. [Google Scholar] [CrossRef]
- Gálvez, Ó.; Maté, B.; Herrero, V.J.; Escribano, R. Spectroscopic effects in CH4/H2O ices. Astrophys. J. 2009, 703, 2101–2107. [Google Scholar] [CrossRef] [Green Version]
- Herrero, V.J.; Gálvez, Ó.; Maté, B.; Escribano, R. Interaction of CH4 and H2O in ice mixtures. Phys. Chem. Chem. Phys. 2010, 12, 3164–3170. [Google Scholar] [CrossRef] [Green Version]
- DeMeo, F.; Dumas, C.; de Bergh, C.; Protopapa, S.; Cruikshank, D.P.; Geballe, T.R.; Alvarez-Candal, A.; Merlin, F.; Barucci, M.A. A search for ethane on Pluto and Triton. Icarus 2010, 208, 412–424. [Google Scholar] [CrossRef]
- Lunine, J.I.; Stevenson, D.J.; Yung, Y.L. Ethane ocean on Titan. Science 1983, 222, 1229–1230. [Google Scholar] [CrossRef]
- Glein, C.R.; Shock, E.L. A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan. Geochim. Cosmochim. Acta 2013, 115, 217–240. [Google Scholar] [CrossRef]
- Mumma, M.J.; Disanti, M.A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C.D.; Xie, D.X. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: Evidence for interstellar origin. Science 1996, 272, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Herbst, E.; Adams, N.G.; Smith, D. Laboratory measurements of ion-molecule reactions pertaining to interstellar hydrocarbon synthesis. Astrophys. J. 1983, 269, 329–333. [Google Scholar] [CrossRef]
- Knez, C.; Moore, M.H.; Ferrante, R.F.; Hudson, R.L. Laboratory IR studies and astrophysical implications of C2H2-containing binary ices. Astrophys. J. 2012, 748, 95. [Google Scholar] [CrossRef]
- Song, M.-Y.; Yoon, J.-S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data 2015, 44, 023101. [Google Scholar] [CrossRef] [Green Version]
- Bug, M.U.; Gargioni, E.; Nettelbeck, H.; Baek, W.-Y.; Hilgers, G.; Rosenfeld, A.B.; Rabus, H. Ionization cross section data of nitrogen, methane, and propane for light ions and electrons and their suitability for use in track structure simulations. Phys. Rev. E 2013, 88, 043308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qasim, D.; Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; Boogert, A.C.A.; Linnartz, H. Formation of interstellar methanol ice prior to the heavy CO freeze-out stage. Astron. Astrophys. 2018, 612, A83. [Google Scholar] [CrossRef]
- Watanabe, N.; Kouchi, A. Efficient formation of formaldehyde and methanol by the addition of hydrogenation atoms to CO in H2O-CO ice at 10 K. Astrophys. J. 2002, 571, L173. [Google Scholar] [CrossRef]
- Watanabe, N.; Nagaoka, A.; Shiraki, T.; Kouchi, A. Hydrogenation of CO on pure solid CO and CO-H2O mixed ice. Astrophys. J. 2004, 616, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, G.W.; Cuppen, H.M.; Ioppolo, S.; Romanzin, C.; Bisschop, S.E.; Andersson, S.; van Dishoeck, E.F.; Linnartz, H. Hydrogenation reactions in interstellar CO ice analogues: A combined experimental/theoretical approach. Astron. Astrophys. 2009, 505, 629–639. [Google Scholar] [CrossRef]
- Gomis, O.; Strazzulla, G. CO2 production by ion irradiation of H2O ice on top of carbonaceous materials and its relevance to the Galilean satellites. Icarus 2005, 177, 570–576. [Google Scholar] [CrossRef]
- Mennella, V.; Palumbo, M.E.; Baratta, G.A. Formation of CO and CO2 molecules by ion irradiation of water ice-covered hydrogenated carbon grains. Astrophys. J. 2004, 615, 1073–1080. [Google Scholar] [CrossRef]
- Mennella, V.; Baratta, G.A.; Palumbo, M.E.; Bergin, E.A. Synthesis of CO and CO2 molecules by UV irradiation of water ice-covered hydrogenated carbon grains. Astrophys. J. 2006, 643, 923–931. [Google Scholar] [CrossRef]
- Palumbo, M.E.; Castorina, A.C.; Strazzulla, G. Ion irradiation effects on frozen methanol (CH3OH). Astron. Astrophys. 1999, 342, 551–562. [Google Scholar]
- de Barros, A.L.F.; Domaracka, A.; Andrade, D.P.P.; Boduch, P.; Rothard, H.; da Silveira, E.F. Radiolysis of frozen methanol by heavy cosmic ray and energetic solar particle analogues. Mon. Not. R. Astron. Soc. 2011, 418, 1363–1374. [Google Scholar] [CrossRef] [Green Version]
- Jheeta, S.; Domaracka, A.; Ptasinska, S.; Sivaraman, B.; Mason, N.J. The irradiation of pure CH3OH and 1:1 mixture of NH3:CH3OH ices at 30 K using low energy electrons. Chem. Phys. Lett. 2013, 556, 359–364. [Google Scholar] [CrossRef]
- Boamah, M.D.; Sullivan, K.K.; Shulenberger, K.E.; Soe, C.M.; Jacob, L.M.; Yhee, F.C.; Atkinson, K.E.; Boyer, M.C.; Haines, D.R.; Arumainayagam, C.R. Low-energy electron-induced chemistry of condensed methanol: Implications for the interstellar synthesis of prebiotic molecules. Faraday Discuss. 2014, 168, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.; Swiderek, P.; Bredehöft, J.H. Electron-induced processing of methanol ice. ACS Earth Space Chem. 2021, 5, 391–408. [Google Scholar] [CrossRef]
- Goumans, T.P.M.; Uppal, M.A.; Brown, W.A. Formation of CO2 on a carbonaceous surface: A quantum chemical study. Mon. Not. R. Astron. Soc. 2008, 384, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Ioppolo, S.; van Boheemen, Y.; Cuppen, H.M.; van Dishoeck, E.F.; Linnartz, H. Surface formation of CO2 ice at low temperatures. Mon. Not. R. Astron. Soc. 2011, 413, 2281–2287. [Google Scholar] [CrossRef] [Green Version]
- Grim, R.J.A.; d’Hendecourt, L.B. Time-dependent chemistry in dense molecular clouds. IV. Interstellar grain surface reactions inferred from a matrix isolation study. Astron. Astrophys. 1986, 167, 161–165. [Google Scholar]
- Roser, J.E.; Vidali, G.; Manicò, G.; Pirronello, V. Formation of carbon dioxide by surface reactions on ices in the interstellar medium. Astrophys. J. 2001, 555, L61. [Google Scholar] [CrossRef]
- Madzunkov, S.; Shortt, B.J.; MacAskill, J.A.; Darrach, M.R.; Chutjian, A. Measurements of polyatomic molecule formation on an icy grain analog using fast atoms. Phys. Rev. A 2006, 73, 020901(R). [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.L.; Gerakines, P.A.; Moore, M.H. Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene. Icarus 2014, 243, 148–157. [Google Scholar] [CrossRef]
Parameter | Experiments | |
---|---|---|
1 | 2 | |
CH4 column density (1017 cm−2) a | 3.24 | 3.91 |
H2O column density (1017 cm−2) b | 1.29 | 1.59 |
Projectile | 1 MeV proton | 2 keV electron |
Projectile stopping power (eV Å−1) c | 2.1 | 0.9 |
Fluence delivered (cm−2) | 4.95 × 1015 | 4.16 × 1016 |
Dose delivered (eV per 16 u) | 46.30 | 168.42 |
Irradiation temperature (K) | 20 | 20 |
Ice thickness (μm) | 0.22 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mifsud, D.V.; Herczku, P.; Sulik, B.; Juhász, Z.; Vajda, I.; Rajta, I.; Ioppolo, S.; Mason, N.J.; Strazzulla, G.; Kaňuchová, Z. Proton and Electron Irradiations of CH4:H2O Mixed Ices. Atoms 2023, 11, 19. https://doi.org/10.3390/atoms11020019
Mifsud DV, Herczku P, Sulik B, Juhász Z, Vajda I, Rajta I, Ioppolo S, Mason NJ, Strazzulla G, Kaňuchová Z. Proton and Electron Irradiations of CH4:H2O Mixed Ices. Atoms. 2023; 11(2):19. https://doi.org/10.3390/atoms11020019
Chicago/Turabian StyleMifsud, Duncan V., Péter Herczku, Béla Sulik, Zoltán Juhász, István Vajda, István Rajta, Sergio Ioppolo, Nigel J. Mason, Giovanni Strazzulla, and Zuzana Kaňuchová. 2023. "Proton and Electron Irradiations of CH4:H2O Mixed Ices" Atoms 11, no. 2: 19. https://doi.org/10.3390/atoms11020019
APA StyleMifsud, D. V., Herczku, P., Sulik, B., Juhász, Z., Vajda, I., Rajta, I., Ioppolo, S., Mason, N. J., Strazzulla, G., & Kaňuchová, Z. (2023). Proton and Electron Irradiations of CH4:H2O Mixed Ices. Atoms, 11(2), 19. https://doi.org/10.3390/atoms11020019