Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines
Abstract
:1. Introduction
2. Models and Codes
3. Results
3.1. Overview of the Line Shapes Submitted
3.2. Lyman-α (Ly-α)
3.3. Balmer-α (Hα)
3.4. Lyman-β (Ly-β)
3.5. Balmerβ (Hβ)
3.6. Line Shapes in Absence of Oscillating Electric Field
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stambulchik, E. Review of the 1st Spectral Line Shapes in Plasmas code comparison workshop. High Energy Density Phys. 2013, 9, 528–534. [Google Scholar] [CrossRef]
- Stambulchik, E.; Iglesias, C. Full radiator-perturber interaction in computer simulations of hydrogenic spectral line broadening by plasmas. Phys. Rev. E 2022, 105, 055210. [Google Scholar] [CrossRef]
- Gomez, T.; Nagayama, T.; Cho, P.; Zammit, M.; Fontes, C.; Kilcrease, D.; Bray, I.; Hubeny, I.; Dunlap, B.; Montgomery, M.; et al. All-order full-Coulomb quantum spectral line-shape calculations. Phys. Rev. Lett. 2021, 127, 235001. [Google Scholar] [CrossRef] [PubMed]
- Rosato, J.; Marandet, Y.; Stamm, R. A new table of Balmer line shapes for the diagnostic of magnetic fusion plasmas. J. Quant. Spectrosc. Radiat. Transf. 2017, 187, 333–337. [Google Scholar] [CrossRef]
- Ferri, S.; Peyrusse, O.; Calisti, A. Stark–Zeeman line-shape model for multielectron radiators in hot dense plasmas subjected to large magnetic fields. Matter Radiat. Extrem. 2022, 7, 015901. [Google Scholar] [CrossRef]
- Baranger, M.; Mozer, B. Light as a plasma probe. Phys. Rev. 1961, 123, 25–28. [Google Scholar] [CrossRef]
- Lisitsa, V. Atoms in Plasmas; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 3-540-57580-4. [Google Scholar]
- Oks, E. Plasma Spectroscopy; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 3-540-54100-4. [Google Scholar]
- Griem, H. Principles of Plasma Spectroscopy; Cambridge University Press: Cambridge, UK, 1997; ISBN 0-521-45504-9. [Google Scholar]
- Wiese, W.; Kelleher, D.; Paquette, D. Detailed study of the Stark broadening of Balmer lines in a high density plasma. Phys. Rev. A 1972, 6, 1132–1153. [Google Scholar] [CrossRef]
- Gallagher, C.; Levine, M. Observation of Hβ satellites in the presence of turbulent electric fields. Phys. Rev. Lett. 1971, 27, 1693–1696. [Google Scholar] [CrossRef]
- Rose, S. A review of opacity workshops. J. Quant. Spectrosc. Radiat. Transf. 1994, 51, 317–318. [Google Scholar] [CrossRef]
- Gigosos, M.; Fraile, J.; Torres, F. Hydrogen Stark profiles: A simulation-oriented mathematical simplification. Phys. Rev. A 1985, 31, 3509–3511. [Google Scholar] [CrossRef]
- Alexiou, S. Methods for Line Shapes in Plasmas in the Presence of External Electric Fields. Atoms 2021, 9, 30. [Google Scholar] [CrossRef]
- Hegerfeld, G.; Kesting, V. Collision time simulation technique for pressure-broadened spectral lines with applications to Ly-α. Phys. Rev. A 1988, 37, 1488–1496. [Google Scholar] [CrossRef]
- Tuck, E. A simple “Filon-trapezoidal” rule. Math. Comput. 1967, 21, 239–241. [Google Scholar]
- Blokhintsev, D. Theory of the Stark effect in a time-dependent field. Phys. Z. Sow. Union 1933, 4, 501–515. [Google Scholar]
- Griem, H.; Kolb, A.; Shen, K. Stark broadening of hydrogen lines in a plasma. Phys. Rev. 1959, 116, 4–16. [Google Scholar] [CrossRef]
- Hannachi, I.; Stamm, R.; Rosato, J.; Marandet, Y. Calculating the simultaneous effect of ion dynamics and oscillating electric fields on Stark profiles. Adv. Space Res. 2023, 71, 1269–1274. [Google Scholar] [CrossRef]
- Hannachi, I.; Stamm, R.; Rosato, J.; Marandet, Y. Spectroscopic diagnostic of oscillating electric fields in edge plasmas. Contrib. Plasma Phys. 2022, 62, e202100168. [Google Scholar] [CrossRef]
- Stambulchik, E.; Maron, Y. A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 730–749. [Google Scholar] [CrossRef]
- Stambulchik, E.; Alexiou, S.; Griem, H.; Kepple, P. Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas. Phys. Rev. E 2007, 75, 016401. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Gomez, T.; Montgomery, M.; Dunlap, B.; Fitz Axen, M.; Hobbs, B.; Hubeny, I.; Winget, D. Simulation of Stark-broadened hydrogen Balmer-line shapes for DA white dwarf synthetic spectra. ApJ 2022, 927, 70. [Google Scholar] [CrossRef]
- SLSP Browser Extension. Available online: https://plasma-gate.weizmann.ac.il/slsp/xul/ (accessed on 1 December 2022).
- Ramette, J.; Drawin, H. Structure of Stark Broadened Hβ Lines at low Electron Densities. Z. Naturforschung A 1976, 31, 401–407. [Google Scholar] [CrossRef]
- Rutgers, W.; de Kluiver, H. The dynamic Stark-effect in a turbulent hydrogen plasma. Z. Naturforschung A 1974, 29, 42–44. [Google Scholar] [CrossRef]
- Ferri, S.; Calisti, A.; Mossé, C.; Rosato, J.; Talin, B.; Alexiou, S.; Gigosos, M.; Gonzales, M.; Gonzales-Herrero, D.; Lara, N.; et al. Ion dynamics effect on Stark-broadened line shapes: A cross-comparison of various models. Atoms 2014, 2, 299–318. [Google Scholar] [CrossRef]
Code | Stationarity | Simulation Technique | Schrödinger Solver | Fourier Transform |
---|---|---|---|---|
ERIP | Yes | Reinjection | Euler–Rodrigues and Runge–Kutta in this case | Fast Fourier Transform |
HSTRKII | No | Collision-time Statistics | Stiff Solver for 0th order plus predictor corrector for plasma14 | Filon |
MyWave | Yes | Reinjection | Implicit scheme | Filon |
SimU | Yes | Reinjection | Runge–Kutta | Fast Fourier Transform |
Xenomorph | Yes | Reinjection | Exponential scheme | Fast Fourier Transform |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannachi, I.; Alexiou, S.; Stamm, R. Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines. Atoms 2024, 12, 19. https://doi.org/10.3390/atoms12040019
Hannachi I, Alexiou S, Stamm R. Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines. Atoms. 2024; 12(4):19. https://doi.org/10.3390/atoms12040019
Chicago/Turabian StyleHannachi, Ibtissem, Spiros Alexiou, and Roland Stamm. 2024. "Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines" Atoms 12, no. 4: 19. https://doi.org/10.3390/atoms12040019
APA StyleHannachi, I., Alexiou, S., & Stamm, R. (2024). Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines. Atoms, 12(4), 19. https://doi.org/10.3390/atoms12040019