Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions
Abstract
1. Introduction
2. General Theory of NHM
2.1. Dressed Hyperfine State
2.2. Nuclear Transition via NHM
3. Results and Discussions
3.1. Energy Levels and Hyperfine Structure of 205Pb76+, 205Pb75+, 205Pb74+, and 205Pb73+ Ions
3.2. Mixing Coefficients in 205Pb76+, 205Pb75+, 205Pb74+, and 205Pb73+ Ions
3.3. Nuclear Transitions in 205Pb76+, 205Pb75+, 205Pb74+, and 205Pb73+ Ions
3.4. Potential Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozlov, M.G.; Safronova, M.S.; Crespo López-Urrutia, J.R.; Schmidt, P.O. Highly Charged Ions: Optical Clocks and Applications in Fundamental Physics. Rev. Mod. Phys. 2018, 90, 045005. [Google Scholar] [CrossRef]
- Eides, M.I.; Grotch, H.; Shelyuto, V.A. Theory of Light Hydrogenlike Atoms. Phys. Rep. 2001, 342, 63–261. [Google Scholar] [CrossRef]
- Shabaev, V.M.; Glazov, D.A.; Plunien, G.; Volotka, A.V. Theory of Bound-Electron g Factor in Highly Charged Ions. J. Phys. Chem. Ref. Data 2015, 44, 031205. [Google Scholar] [CrossRef]
- Sturm, S.; Vogel, M.; Köhler-Langes, F.; Quint, W.; Blaum, K.; Werth, G. High-Precision Measurements of the Bound Electron’s Magnetic Moment. Atoms 2017, 5, 4. [Google Scholar] [CrossRef]
- Beiersdorfer, P. Laboratory X-ray Astrophysics. Annu. Rev. Astron. Astrophys. 2003, 41, 343–390. [Google Scholar] [CrossRef]
- Lyuboshitz, V.L.; Onishchuk, V.A.; Podgoretskij, M.I. Some Interference Effects Due to the Mixing of Quantum Levels by External Fields. Sov. J. Nucl. Phys. 1966, 3, 420. [Google Scholar]
- Szerypo, J.; Barden, R.; Kalinowski, Ł.; Kirchner, R.; Klepper, O.; Płochocki, A.; Roeckl, E.; Rykaczewski, K.; Schardt, D.; Żylicz, J. Low-Lying Levels in 104In and a Problem of Spin-mixing in Hyperfine Fields. Nucl. Phys. A 1990, 507, 357–370. [Google Scholar] [CrossRef]
- Wycech, S.; Żylicz, J. Predictions for Nuclear Spin Mixing in Magnetic Fields. Acta Phys. Pol. B 1993, 24, 637–647. [Google Scholar]
- Wu, C.S.; Wilets, L. Muonic Atoms and Nuclear Structure. Annu. Rev. Nucl. Part. Sci. 1969, 19, 527–606. [Google Scholar] [CrossRef]
- Hitlin, D.; Bernow, S.; Devons, S.; Duerdoth, I.; Kast, J.W.; Macagno, E.R.; Rainwater, J.; Wu, C.S.; Barrett, R.C. Muonic Atoms. I. Dynamic Hyperflne Structure in the Spectra of Deformed Nuclei. Phys. Rev. C 1970, 1, 1184. [Google Scholar] [CrossRef]
- Michel, N.; Oreshkina, N.S. Higher-order Corrections to the Dynamic Hyperfine Structure of Muonic Atoms. Phys. Rev. A 2019, 99, 042501. [Google Scholar] [CrossRef]
- Karpeshin, F.F.; Wycech, S.; Band, I.M.; Trzhaskovskaya, M.B.; Pfützner, M.; Żylicz, J. Rates of Transitions between the Hyperfine-splitting Components of the Ground-state and the 3.5 eV Isomer in 229Th89+. Phys. Rev. C 1998, 57, 3085. [Google Scholar] [CrossRef]
- Pachucki, K.; Wycech, S.; Żylicz, J.; Pfützner, M. Nuclear-spin Mixing Oscillations in 229Th89+. Phys. Rev. C 2001, 64, 064301. [Google Scholar] [CrossRef]
- Tkalya, E.V.; Nikolaev, A.V. Magnetic Hyperfine Structure of the Ground-state Doublet in Highly Charged Ions 229Th89+,87+ and the Bohr-Weisskopf Effect. Phys. Rev. C 2016, 94, 014323. [Google Scholar] [CrossRef]
- Shabaev, V.M.; Glazov, D.A.; Ryzhkov, A.M.; Brandau, C.; Plunien, G.; Quint, W.; Volchkova, A.M.; Zinenko, D.V. Ground-State g Factor of Highly Charged 229Th Ions: An Access to the M1 Transition Probability between the Isomeric and Ground Nuclear States. Phys. Rev. Lett. 2022, 128, 043001. [Google Scholar] [CrossRef]
- Jin, J.; Bekker, H.; Kirschbaum, T.; Litvinov, Y.A.; Pálffy, A.; Sommerfeldt, J.; Surzhykov, A.; Thirolf, P.G.; Budker, D. Excitation and Probing of Low-energy Nuclear States at High-energy Storage Rings. Phys. Rev. Res. 2023, 5, 023134. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X. Substantial Nuclear Hyperfine Mixing Effect in Boronlike 205Pb Ions. Phys. Rev. Lett. 2024, 133, 032501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, T.; Wang, X. Highly Nonlinear Light-Nucleus Interaction. Phys. Rev. Lett. 2024, 133, 152503. [Google Scholar] [CrossRef]
- Tiedau, J.; Okhapkin, M.V.; Zhang, K.; Thielking, J.; Zitzer, G.; Peik, E.; Schaden, F.; Pronebner, T.; Morawetz, I.; Toscani De Col, L.; et al. Laser Excitation of the Th-229 Nucleus. Phys. Rev. Lett. 2024, 132, 182501. [Google Scholar] [CrossRef]
- Elwell, R.; Schneider, C.; Jeet, J.; Terhune, J.E.S.; Morgan, H.W.T.; Alexandrova, A.N.; Tran Tan, H.B.; Derevianko, A.; Hudson, E.R. Laser Excitation of the 229Th Nuclear Isomeric Transition in a Solid-State Host. Phys. Rev. Lett. 2024, 133, 013201. [Google Scholar] [CrossRef]
- Zhang, C.; Ooi, T.; Higgins, J.S.; Doyle, J.F.; von der Wense, L.; Beeks, K.; Leitner, A.; Kazakov, G.A.; Li, P.; Thirolf, P.G.; et al. Frequency Ratio of the 229mTh Nuclear Isomeric Transition and the 87Sr Atomic Clock. Nature 2024, 633, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Nuclear Structure and Decay Databases. Available online: https://www.nndc.bnl.gov/ (accessed on 20 October 2024).
- Wang, W.; Zou, F.; Fritzsche, S.; Li, Y. Isomeric Population Transfer of the 229Th Nucleus via Hyperfine Electronic Bridge. Phys. Rev. Lett. 2024, 133, 223001. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.F.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 2019, 237, 184–187. [Google Scholar] [CrossRef]
- Schwartz, C. Theory of Hyperfine Structure. Phys. Rev. 1955, 97, 380. [Google Scholar] [CrossRef]
- Fritzsche, S. The Ratip Program for Relativistic Calculations of Atomic Transition, Ionization and Recombination Properties. Comput. Phys. Commun. 2012, 183, 1525–1559. [Google Scholar] [CrossRef]
- Alder, K.; Bohr, A.; Huus, T.; Mottelson, B.; Winther, A. Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions. Rev. Mod. Phys. 1956, 28, 432. [Google Scholar] [CrossRef]
- Schmidt, T. Über die magnetischen Momente der Atomkernee. Z. Phys. A 1937, 106, 358–361. [Google Scholar] [CrossRef]
- Bernitt, S.; Brown, G.V.; Rudolph, J.K.; Steinbrügge, R.; Graf, A.; Leutenegger, M.; Epp, S.W.; Eberle, S.; Kubiček, K.; Mäckel, V.; et al. An Unexpectedly Low Oscillator Strength as the Origin of the Fe XVII Emission Problem. Nature 2012, 492, 225–228. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X. Quantum Theory of Isomeric Excitation of 229Th in Strong Laser Fields. Phys. Rev. Res. 2023, 5, 043232. [Google Scholar] [CrossRef]
- Izquierdo, M. Scientific Instrument Soft X-Ray Port (SXP). Part A: Science Cases; XFEL.EU TR-2022-001A; European X-Ray Free-Electron Laser Facility GmbH: Schenefeld, Germany, 2022. [Google Scholar]
- Liu, T.; Huang, N.; Yang, H.; Qi, Z.; Zhang, K.; Gao, Z.; Chen, S.; Feng, C.; Zhang, W.; Luo, H.; et al. Status and Future of the Soft X-ray Free-Electron Laser Beamline at the SHINE. Front. Phys. 2023, 11, 1172368. [Google Scholar] [CrossRef]
Ions | Configuration | Angular Momentum J | Energy (eV) |
---|---|---|---|
205Pb76+ | 0 | 0 | |
1 | 2288 | ||
2 | 2306 | ||
2 | 4627 | ||
0 | 4701 | ||
205Pb75+ | 0 | ||
2256 | |||
2279 | |||
2342 | |||
4605 | |||
205Pb74+ | 2 | 0 | |
0 | 71.34 | ||
1 | 2265 | ||
2 | 2283 | ||
0 | 4582 | ||
205Pb73+ | 0 | ||
2247 |
Isomeric State | Total Angular Momentum | Mixing Coefficients () |
---|---|---|
1 | , , | |
2 | , , | |
, | ||
, | ||
1 | ||
2 |
Ions | Transition | Type | Rate () | |
---|---|---|---|---|
205Pb76+ | 1.6 s | |||
205Pb75+ | 1.5 s | |||
0.60 s | ||||
40 s | ||||
7.8 | 89 ms | |||
18 | 39 ms | |||
2.4 | 0.29 s | |||
4.1 s | ||||
205Pb74+ | 2.2 s | |||
25 s | ||||
33 s | ||||
1.6 | 0.43 s | |||
1.8 min | ||||
15 s | ||||
0.94 s | ||||
2.8 min | ||||
6.0 | 0.12 s | |||
69 min | ||||
205Pb73+ | 0.93 s | |||
0.72 s | ||||
0.90 s | ||||
24 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, Y.; Wang, X. Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions. Atoms 2025, 13, 2. https://doi.org/10.3390/atoms13010002
Wang W, Li Y, Wang X. Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions. Atoms. 2025; 13(1):2. https://doi.org/10.3390/atoms13010002
Chicago/Turabian StyleWang, Wu, Yong Li, and Xu Wang. 2025. "Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions" Atoms 13, no. 1: 2. https://doi.org/10.3390/atoms13010002
APA StyleWang, W., Li, Y., & Wang, X. (2025). Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions. Atoms, 13(1), 2. https://doi.org/10.3390/atoms13010002