Tungsten Data for Current and Future Uses in Fusion and Plasma Science
Abstract
:1. Introduction
2. Experimental Results
3. Theoretical Atomic Data and Spectral Modeling
4. Assessment of Atomic Data Needs for ITER Core Diagnostics
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beiersdorfer, P.; May, M.J.; Scofield, J.H.; Hansen, S.B. Atomic physics and ionization balance of high-Z ions: Critical ingredients for characterizing and understanding high-temperature plasmas. High Energ. Dens. Phys. 2012, 8, 271–283. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Lennartsson, T. Atomic data of tungsten for current and future uses in fusion and plasma science. AIP Conf. Proc. 2013, 1525, 78–83. [Google Scholar]
- Bolt, H.; Barabash, V.; Federici, G.; Linke, J.; Loarte, A.; Roth, J.; Sato, K. Plasma facing and high heat flux materials—Needs for ITER and beyond. J. Nucl. Mater. 2002, 307, 43–52. [Google Scholar]
- Skinner, C.H. Applications of EBIT to magnetic fusion diagnostics. Can. J. Phys. 2008, 86, 285–290. [Google Scholar]
- Peacock, N.J.; O’Mullane, M.G.; Barnsley, R.; Tarbutt, M.R. Anticipated X-ray and VUV spectroscopic data from ITERwith appropriate diagnostic instrumentation. Can. J. Phys. 2008, 86, 277–284. [Google Scholar]
- Beiersdorfer, P.; Clementson, J.; Dunn, J.; Gu, M.F.; Morris, K.; Podpaly, Y.; Wang, E.; Bitter, M.; Feder, R.; Hill, K.W.; et al. The ITER core imaging X-ray spectrometer. J. Phys. B 2010, 43, 144008. [Google Scholar]
- Varshney, S.K.; Barnsley, R.; O’Mullane, M.G.; Jakhar, S. Bragg X-ray survey spectrometer for ITER. Rev. Sci. Instrum. 2012, 83, 10E126. [Google Scholar]
- Seon, C.R.; Hong, J.H.; Jang, J.; Lee, S.H.; Choe, W.; Lee, H.H.; Cheon, M.S.; Pak, S.; Lee, H.G.; Biel, W.; et al. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas. Rev. Sci. Instrum. 2014, 85, 11E403. [Google Scholar]
- Matthews, G.F.; Edwards, P.; Hirai, T.; Kear, M.; Lioure, A.; Lomas, P.; Loving, A.; Lungu, C.; Maier, H.; Mertens, P.; Neilson, D.; et al. Overview of the ITER-like wall project. Phys. Scr. 2007, T128, 137–143. [Google Scholar]
- Sips, A.C.C.; Gruber, O.; ASDEX Upgrade Team. Compatibility of ITER scenarios with an all-W wall. Plasma Phys. Controll. Fusion 2008, 50, 124028. [Google Scholar]
- Neu, R.; Bobkov, V.; Dux, R.; Fuchs, J.C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Maier, H.; Mayer, M.; Rohde, V.; et al. Ten years of W programme in ASDEX Upgrade—Challenges and conclusions. Phys. Scr. 2009, T138, 014038. [Google Scholar]
- Li, J.; Luo, G.; Ding, R.; Yao, D.; Chen, J.; Cao, L.; Hu, J.; Li, Q. the EAST Team. Plasma facing components for the Experimental Advanced Superconducting Tokamak and CFETR. Phys. Scr. 2014, T159, 014001. [Google Scholar]
- Beiersdorfer, P. A “brief” history of spectroscopy on EBIT. Can. J. Phys. 2008, 86, 1–10. [Google Scholar]
- Marrs, R.E.; Levine, M.A.; Knapp, D.A.; Henderson, J.R. Measurement of electron-impact-excitation cross sections for very highly charged ions. Phys. Rev. Lett. 1988, 60, 1715–1718. [Google Scholar]
- Levine, M.A.; Marrs, R.E.; Bardsley, J.N.; Beiersdorfer, P.; Bennett, C.L.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; et al. The use of an electron beam ion trap in the study of highly charged ions. Nucl. Instrum. Methods 1989, B43, 431–440. [Google Scholar]
- Elliott, S.R.; Beiersdorfer, P.; MacGowan, B.J.; Nilsen, J. Measurements of line overlap for resonant spoiling of X-ray lasing transitions in nickel-like tungsten. Phys. Rev. A 1995, 52, 2689–2692. [Google Scholar]
- Neill, P.; Harris, C.; Safronova, A.; Hamasha, S.; Hansen, S.; Safronova, U.; Beiersdorfer, P. The study of X-ray M-shell spectra of W ions from the Lawrence Livermore National Laboratory Electron Beam Ion Trap. Can. J. Phys. 2004, 82, 931–942. [Google Scholar]
- Shlyaptseva, A.; Fedin, D.; Hamasha, S.; Harris, C.; Kantsyrev, V.; Neill, P.; Ouart, N.; Safronova, U.I.; Beiersdorfer, P.; Boyce, K.; et al. Development of M-shell X-ray spectroscopy and spectropolarimetry of z-pinch tungsten plasmas. Rev. Sci. Instrum. 2004, 75, 3750–3752. [Google Scholar]
- Osborne, G.C.; Safronova, A.S.; Kantsyrev, V.L.; Safronova, U.I.; Yilmaz, M.F.; Williamson, K.; Shrestha, I.; Beiersdorfer, P. Diagnostic of charge balance in high-temperature tungsten plasmas using LLNL EBIT. Rev. Sci. Instrum. 2008, 79, 10E308. [Google Scholar]
- Podpaly, Y.; Clementson, J.; Beiersdorfer, P.; Williamson, J.; Brown, G.V.; Gu, M.F. Spectroscopy of 2s1/2 − 2p3/2 transitions in W65+ through W71+. Phys. Rev. A 2009, 80, 052504. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Gu, M.F. X-ray spectroscopy of E2 and M3 transitions in Ni-like W. Phys. Rev. A 2010, 81, 012505. [Google Scholar]
- Clementson, J.; Beiersdorfer, P. Wavelength measurement of n = 3 to n = 3 transitions in highly charged tungsten ions. Phys. Rev. A 2010, 81, 052509. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Brown, G.V.; Gu, M.F. Spectroscopy of M-shell x-ray transitions in Zn-like through Co-like W. Phys. Scr. 2010, 81, 015301. [Google Scholar]
- Utter, S.B.; Beiersdorfer, P.; Träbert, E. Electron-beam ion-trap spectra of tungsten in the EUV. Can. J. Phys. 2002, 80, 1503–1515. [Google Scholar]
- Utter, S.B.; Beiersdorfer, P.; Träbert, E.; Clothiaux, E.J. Wavelengths of the 4s1/2−4p3/2 resonance lines in Cu-like heavy ions. Phys. Rev. A 2003, 67, 032502. [Google Scholar]
- Utter, S.B.; Beiersdorfer, P.; Träbert, E. Accurate wavelengths of resonance lines in Zn-like heavy ions. Can. J. Phys. 2003, 81, 911–918. [Google Scholar]
- Utter, S.B.; Beiersdorfer, P.; Brown, G.V. Measurement of an unusual M1 transition in the ground state of Ti-like W52+. Phys. Rev. A 2000, 61, 030503. [Google Scholar]
- Utter, S.B.; Beiersdorfer, P.; Träbert, E. Wavelength measurement of the prominent M1 transition in the ground state of Ti-like Pt, Au, and Tl ions. Phys. Rev. A 2003, 67, 012508. [Google Scholar]
- Beiersdorfer, P. Spectroscopy with trapped highly charged ions. Phys. Scr. 2009, T134, 014010. [Google Scholar]
- Radtke, R.; Biedermann, C.; Schwob, J.L.; Mandelbaum, P.; Doron, R. Line and band emission from tungsten ions with charge 21+ to 45+ in the 45–70 Å range. Phys. Rev. A 2001, 64, 012720. [Google Scholar]
- Hutton, R.; Zou, Y.; Reyna Almandos, J.; Biedermann, C.; Radtke, R.; Greier, A.; Neu, R. EBIT spectroscopy of Pm-like tungsten. Nucl. Instrum. Methods Phys. Res. B 2003, 205, 114–118. [Google Scholar]
- Radtke, R.; Biedermann, C.; Mandelbaum, P.; Schwob, J.L. X-ray and EUV spectroscopic measurements of highly charged tungsten ions relevant to fusion plasmas. J. Phys. Conf. Ser. 2007, 58, 113. [Google Scholar]
- Ralchenko, Y.; Reader, J.; Pomeroy, J.M.; Tan, J.N.; Gillaspy, J.D. Spectra of W39+ W47+ in the 1220 nm region observed with an EBIT light source. J. Phys. B 2007, 40, 3861–3875. [Google Scholar]
- Ralchenko, Y.; Draganic, I.N.; Tan, J.N.; Gillaspy, J.D.; Pomeroy, J.M.; Reader, J.; Feldman, U.; Holland, G.E. EUV spectra of highly-charged ions W54+ W63+ relevant to ITER diagnostics. J. Phys. B 2008, 41, 021003. [Google Scholar]
- Ralchenko, Y.; Draganić, I.N.; Osin, D.; Gillaspy, J.D.; Reader, J. Spectroscopy of diagnostically important magnetic-dipole lines in highly charged 3dn ions of tungsten. Phys. Rev. A 2011, 83, 032517. [Google Scholar]
- Fei, Z.; Zhao, R.; Shi, Z.; Xiao, J.; Qiu, M.; Grumer, J.; Andersson, M.; Brage, T.; Hutton, R.; Zou, Y. Experimental and theoretical study of the ground-state M1 transition in Ag-like tungsten. Phys. Rev. A 2012, 86, 062501. [Google Scholar]
- Fei, Z.; Li, W.; Grumer, J.; Shi, Z.; Zhao, R.; Brage, T.; Huldt, S.; Yao, K.; Hutton, R.; Zou, Y. Forbidden-line spectroscopy of the ground-state configuration of Cd-like W. Phys. Rev. A 2014, 90, 052517. [Google Scholar]
- Watanabe, H.; Nakamura, N.; Kato, D.; Sakaue, H.A.; Ohtani, S. Lines from highly charged tungsten ions observed in the visible region between 340 and 400 nm. Can. J. Phys. 2012, 90, 497–501. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Magee, E.W.; McLean, H.S.; Wood, R.D. Tungsten spectroscopy relevant to the diagnostics of ITER divertor plasmas. J. Phys. B 2010, 43, 144009. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Roquemore, A.L.; Skinner, C.H.; Mansfield, D.K.; Hartzfeld, K.; Lepson, J.K. Experimental setup for tungsten transport studies at the NSTX tokamak. Rev. Sci. Instrum. 2010, 81, 10E326. [Google Scholar]
- Reinke, M.L.; Beiersdorfer, P.; Howard, N.T.; Magee, E.W.; Podpaly, Y.; Rice, J.E.; Terry, J.L. Vacuum ultraviolet impurity spectroscopy on the Alcator C-Mod tokamak. Rev. Sci. Instrum. 2010, 81, 10D736. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Na-like W from Ne-like W. At. Data Nucl. Data Tables 2009, 95, 751–785. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Excitation energies, radiative and autoionization rates, dielectronic satellite lines and dielectronic recombination rates for excited states of Mg-like W from Na-like W. J. Phys. B 2009, 42, 165010. [Google Scholar]
- Beiersdorfer, P.; Behar, E.; Boyce, K. R.; Brown, G. V.; Chen, H.; Gendreau, K. C.; Graf, A.; Gu, M.-F.; Harris, C. L.; Kahn, S. M.; Kelley, R. L.; Lepson, J. K.; May, M. J.; Neill, P. A.; Pinnington, E. H.; Porter, F. S.; Smith, A. J.; Stahle, C. K.; Szymkowiak, A. E.; Tillotson, A.; Thorn, D. B.; Träbert, E.; Wargelin, B. J. Overview of the Livermore electron beam ion trap project. Nucl. Instrum. Methods 2003, 205, 173–177. [Google Scholar]
- Beiersdorfer, P.; Lepson, J.K.; Schneider, M.B.; Bode, M.P. L-shell X-ray Emission from neon-like W64+. Phys. Rev. A 2012, 86, 012509. [Google Scholar]
- Lennartsson, T.; Clementson, J.; Beiersdorfer, P. Experimental wavelengths for intrashell transitions in tungsten ions with partially filled 3p and 3d subshells. Phys. Rev. A 2013, 87, 062505. [Google Scholar]
- Clementson, J.; Lennartsson, T.; Beiersdorfer, P.; Safronova, A.S. Extreme Ultraviolet Spectra of Few-times Ionized Tungsten for Divertor Plasma Diagnostics. Atoms 2015. submitted. [Google Scholar]
- Marrs, R.E. Milestones in EBIT spectroscopy and why it almost did not work. Can. J. Phys. 2008, 86, 11–18. [Google Scholar]
- Lepson, J.K.; Beiersdorfer, P. Low-energy operation of the lawrence livermore electron beam ion traps: Atomic spectroscopy of Si V, S VII and Ar IX. Phys. Scr. 2005, 2005, 62. [Google Scholar]
- Marrs, R.E.; Elliott, S.R.; Knapp, D.A. Production and trapping of hydrogenlike and bare uranium ions in an electron beam ion trap. Phys. Rev. Lett. 1994, 72, 4082–4085. [Google Scholar]
- Chen, H.; Beiersdorfer, P.; Heeter, L.A.; Liedahl, D.A.; Naranjo-Rivera, K.L.; Träbert, E.; Gu, M.F.; Lepson, J.K. Experimental and theoretical evaluation of density-sensitive N VI, Ar XIV, and Fe XXII line ratios. Astrophys. J. 2004, 611, 598. [Google Scholar]
- Beiersdorfer, P.; Magee, E.W.; Träbert, E.; Chen, H.; Lepson, J.K.; Gu, M.F.; Schmidt, M. Flat-field grating spectrometer for high-resolution soft X-ray and extreme ultraviolet measurements on an electron beam ion trap. Rev. Sci. Instrum. 2004, 75. [Google Scholar] [CrossRef]
- Beiersdorfer, P.; Marrs, R.E.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Platt, D.B.; Schneider, M.B.; Vogel, D.A.; Wong, K.L. High-resolution X-ray spectrometer for an electron beam ion trap. Rev. Sci. Instrum. 1990, 61, 2338–2342. [Google Scholar]
- Brown, G.V.; Beiersdorfer, P.; Widmann, K. Wide-band, high-resolution soft X-ray spectrometer for the Electron Beam Ion Trap. Rev. Sci. Instrum. 1999, 70, 280–283. [Google Scholar]
- Porter, F.S.; Brown, G.V.; Boyce, K.R.; Kelley, R.L.; Kilbourne, C.A.; Beiersdorfer, P.; Chen, H.; Terracol, S.; Kahn, S.M.; Szymkowiak, A.E. The Astro-E2 X-ray spectrometer/EBIT microcalorimeter X-ray spectrometer. Rev. Sci. Instrum. 2004, 75, 3772–3774. [Google Scholar]
- Porter, F.S.; Beck, B.R.; Beiersdorfer, P.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gygax, J.; Kahn, S.M.; Kelley, R.L.; Kilbourne, C.A.; et al. The XRS microcalorimeter spectrometer at the Livermore electron beam ion trap. Can. J. Phys. 2008, 86, 231–240. [Google Scholar]
- Osborne, G.C.; Safronova, A.S.; Kantsyrev, V.L.; Safronova, U.I.; Beiersdorfer, P.; Williamson, K.; Weller, M.E.; Shrestha, I. Spectroscopic Analysis and Modeling of Tungsten EBIT and Z-Pinch Plasma Experiments. Can. J. Phys. 2011, 89, 599–608. [Google Scholar]
- Beiersdorfer, P.; Magee, E.W.; Brown, G.V.; Hell, N.; Träbert, E.; Widmann, K. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap. Rev. Sci. Instrum. 2014, 85, 11E422. [Google Scholar]
- Sugar, J.; Kaufman, V. Seventh spectrum of tungsten (W vii); resonance lines of Hf v. Phys. Rev. A 1975, 12, 994–1012. [Google Scholar]
- Ryabtsev, A.N.; Kononov, E.Y.; Kildiyarova, R.R.; Tchang-Brillet, W.Ü.L.; Wyart, J.F. The spectrum of seven times ionized tungsten (W VIII) relevant to tokamak divertor plasmas. Phys. Scr. 2013, 87, 045303. [Google Scholar]
- Beiersdorfer, P.; Bitter, M.; Roquemore, L.; Lepson, J.K.; Gu, M.F. Grazing-incidence spectrometer for soft X-ray and extreme ultraviolet spectroscopy on the National Spherical Torus Experiment. Rev. Sci. Instrum. 2006, 77, 10F306. [Google Scholar]
- Graf, A.T.; Brockington, S.; Horton, R.; Howard, S.; Hwang, D.; Beiersdorfer, P.; Clementson, J.; Hill, D.; May, M.; Mclean, H.; et al. Spectroscopy on magnetically confined plasmas using electron beam ion trap spectrometers. Can. J. Phys. 2008, 86, 307–313. [Google Scholar]
- Beiersdorfer, P.; Lepson, J.K.; Bitter, M.; Hill, K.W.; Roquemore, L. Time-resolved X-ray and extreme ultraviolate spectrometer for use on the National Spherical Torus Experiment. Rev. Sci. Instrum. 2008, 79, 10E318. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Gu, M.F.; McLean, H.S.; Wood, R.D. EUV spectroscopy on the SSPX spheromak. J. Phys. Conf. Ser. 2008, 130, 012004. [Google Scholar]
- Lepson, J.; Beiersdorfer, P.; Clementson, J.; Bitter, M.; Hill, K.W.; Kaita, R.; Skinner, C.H.; Roquemore, L.; Zimmer, G. High-resolution time-resolved extreme ultraviolet spectroscopy on NSTX. Rev. Sci. Instrum. 2012, 83, 10D520. [Google Scholar]
- Widmann, K.; Beiersdorfer, P.; Magee, E.W.; Boyle, D.P.; Kaita, R.; Majeski, R. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band. Rev. Sci. Instrum. 2014, 85, 11D630. [Google Scholar]
- Podpaly, Y.A.; Rice, J.E.; Beiersdorfer, P.; Reinke, M.L.; Clementson, J.; Barnard, H.S. Tungsten measurement on Alcator C-Mod and EBIT for future fusion reactors. Can. J. Phys. 2011, 89, 591–597. [Google Scholar]
- Chowdhuri, M.B.; Morita, S.; Goto, M.; Nishimura, H.; Nagai, K.; Fujioka, S. Line analysis of EUV spectra from molybdenum and tungsten injected with impurity pellets in LHD. Plasma Fusion Res. 2008, 2, S1060. [Google Scholar]
- Gu, M.F. The flexible atomic code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar]
- Clementson, J.; Beiersdorfer, P.; Brage, T.; Gu, M.F. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions. At. Data Nucl. Data Tables 2014, 100, 577–649. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Dielectronic recombination and satellite line spectra of highly charged tungsten ions. Can. J. Phys. 2011, 89, 581–589. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P.; Johnson, W.R. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Ag-like W from Pd-like W. J. Phys. B At. Mol. Phys. 2011, 44, 035005. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Relativistic atomic data for Cu-like tungsten. Phys. Rev. A 2012, 86, 042510. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Yb-like W. J. Phys. B At. Mol. Phys. 2012, 45, 085001. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Relativistic many-body calculations of excitation energies, oscillator strengths, transition rates, and lifetimes in samarium like ions. Phys. Rev. A 2013, 87, 032508. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Contribution of the 4f-core-excited states in determination of atomic properties in the promethium isoelectronic sequence. Phys. Rev. A 2013, 88, 032512. [Google Scholar]
- Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P. Dielectronic recombination of Zn-like W44+ from Cu-like W45+. Phys. Rev. A 2015. submitted. [Google Scholar]
- Seon, C.R.; Choi, S.H.; Cheon, M.S.; Pak, S.; Lee, H.G.; Biel, W.; Barnsley, R. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors. Rev. Sci. Instrum. 2010, 81, 10E508. [Google Scholar]
- Beiersdorfer, P.; Brown, G.V.; Graf, A.T.; Bitter, M.; Hill, K.W.; Kelley, R.L.; Kilbourne, C.A.; Leutenegger, M.A.; Porter, F.S. Rest-wavelength fiducials for the ITER core imaging X-ray spectrometer. Rev. Sci. Instrum. 2012, 83, 10E111. [Google Scholar]
- Beiersdorfer, P.; Clementson, J.; Widmann, K.; Bitter, M.; Hill, K.W.; Johnson, D.; Barnsley, R.; Chung, H.K.; Safronova, U.I. ITER core imaging X-ray spectroscopy: Atomic physics issues. AIP Conf. Proc. 2015, 48, 144017. [Google Scholar]
- Beiersdorfer, P. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities. J. Phys. B 2015, in press. [Google Scholar]
- Beiersdorfer, P.; Osterheld, A.L.; Chen, M.H.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Marrs, R.E.; Reed, K.J.; Schneider, M.B.; Vogel, D.A. Indirect X-ray line formation processes in highly charged barium. Phys. Rev. Lett. 1990, 65, 1995–1998. [Google Scholar]
- Chung, H.K.; Bowen, C.; Fontes, C.J.; Hansen, S.B.; Ralchenko, Y. Comparison and analysis of collisional-radiative models at the NLTE-7 workshop. High Energ. Dens. Phys. 2013, 9, 645–652. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beiersdorfer, P.; Clementson, J.; Safronova, U.I. Tungsten Data for Current and Future Uses in Fusion and Plasma Science. Atoms 2015, 3, 260-272. https://doi.org/10.3390/atoms3020260
Beiersdorfer P, Clementson J, Safronova UI. Tungsten Data for Current and Future Uses in Fusion and Plasma Science. Atoms. 2015; 3(2):260-272. https://doi.org/10.3390/atoms3020260
Chicago/Turabian StyleBeiersdorfer, Peter, Joel Clementson, and Ulyana I. Safronova. 2015. "Tungsten Data for Current and Future Uses in Fusion and Plasma Science" Atoms 3, no. 2: 260-272. https://doi.org/10.3390/atoms3020260
APA StyleBeiersdorfer, P., Clementson, J., & Safronova, U. I. (2015). Tungsten Data for Current and Future Uses in Fusion and Plasma Science. Atoms, 3(2), 260-272. https://doi.org/10.3390/atoms3020260