On the Classical Coupling between Gravity and Electromagnetism
Abstract
:1. Introduction
2. A Point Charge
3. An Electric Dumbbell
4. A Point Charge in a Charged Shell
5. The “4/3” Problem
6. The Complication of Charge Redistribution
7. The Feasibility of Electron Free-Fall Experiments
7.1. Fairbank’s Experiments
7.2. Modern Advancements in Technology
7.3. Anticipated Difficulties
8. Conclusions
Appendix
A1. Uniformly-Charged Shell
A2. Conducting Shell with Non-Uniform Charge Density
Acknowledgments
Conflicts of Interest
References and Notes
- Einstein, A. The foundation of the general theory of Relativity. In The Principle of Relativity; Dover: New York, NY, USA, 1952; p. 163. [Google Scholar]
- Dyson, F.W.; Eddington, A.S.; Davidson, C. A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of 29 May 1919. Philos. Trans. R. Soc. 1920, 220A, 291–333. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: New York, NY, USA, 1999; p. 664. [Google Scholar]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia; Princeton University Press: Princeton, NJ, USA, 1995; p. 14. [Google Scholar]
- Boyer, T.H. Electrostatic potential energy leading to a gravitational mass change for a system of two point charges. Am. J. Phys. 1979, 47, 129–131. [Google Scholar] [CrossRef]
- Griffiths, D.J. Electrostatic levitation of a dipole. Am. J. Phys. 1986, 54, 744. [Google Scholar] [CrossRef]
- Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific: Hackensack, NJ, USA, 2007; p. 219. [Google Scholar]
- Simon, M.D.; Geim, A.K. Diamagnetic levitation: Flying frogs and floating magnets. J. App. Phys. 2000, 87, 6200–6204. [Google Scholar] [CrossRef]
- Rhim, W.; Chung, S.K.; Barber, D.; Man, K.F.; Gutt, G.; Rulison, A.; Spjut, R.E. An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev. Sci. Instr. 1993, 64, 2961–2970. [Google Scholar] [CrossRef]
- Trinh, E.H. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instr. 1985, 56, 2059–2065. [Google Scholar] [CrossRef]
- Witteborn, F.C.; Fairbank, W.M. Experiments to determine the force of gravity on single electrons and positrons. Nature 1968, 22, 436–440. [Google Scholar] [CrossRef]
- Eriksen, E.; Grøn, Ø. Electrodynamics of hyperbolically accelerated charges V. the field of a charge in the Rindler space and the Milne space. Ann. Phys. 2004, 313, 147–196. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Owen, R.E. Mass renormalization in classical electrodynamics. Am. J. Phys. 1983, 51, 1120–1126. [Google Scholar] [CrossRef]
- Lorentz, H.A. The Theory of Electrons and Its applications to the Phenomena of Light and Radiant Heat, 2nd ed.; Dover Publications, Inc.: New York, NY, USA, 1952. [Google Scholar]
- Abraham, M. Prinzipien der Dynamik des Elektrons. Ann. Phys. 1903, 10, 105–179. [Google Scholar] [CrossRef]
- Pearle, P. Electromagnetism: Paths to Research; Teplitz, D., Ed.; Plenum: New York, NY, USA, 1982; Chapter 7. [Google Scholar]
- Ori, A.; Rosenthal, E. Universal self-force from an extended object approach. Phys. Rev. D 2003, 68, 041701. [Google Scholar] [CrossRef]
- Ori, A.; Rosenthal, E. Calculation of the self force using the extended-object approach. J. Math. Phys. 2003, 45, 2347–2364. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Classical theory of radiating electrons. Proc. R. Soc. Lond. A 1938, 167, 148–169. [Google Scholar] [CrossRef]
- Poincaré, H. On the dynamics of the electron. Rend. Circ. Mat. Pulermo 1906, 21, 129–176. [Google Scholar] [CrossRef]
- Rohrlich, F. Electromagnetic momentum, energy, and mass. Am. J. Phys. 1970, 38, 1310–1316. [Google Scholar] [CrossRef]
- Rohrlich, F. Self-energy and stability of the classical electron. Am. J. Phys. 1960, 28, 639–643. [Google Scholar] [CrossRef]
- Rohrlich, F. The dynamics of a charged sphere and the electron. Am. J. Phys. 1997, 65, 1051–1056. [Google Scholar] [CrossRef]
- Yaghjian, A.D. Relativistic Dynamics of a Charged Sphere; Springer-Verlag: Berlin, Germany, 1992. [Google Scholar]
- Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific: Hackensack, NJ, USA, 2007; Ch2; pp. 8–24. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: New York, NY, USA, 1999; Section 16.3; pp. 750–757. [Google Scholar]
- In the introduction, the deflection of light in a gravitational field was mentioned, and now we have an expression for the deflection of electric field lines. It is interesting to note that electric field lines and light ray trajectories in a gravitational field have the same shape.
- Rainville, S.; Thompson, J.K.; Myers, E.G.; Brown, J.M.; Dewey, M.S.; Kessler, E.G., Jr.; Deslattes, R.D.; Börner, H.G.; Jentschel, M.; Mutti, P.; et al. World Year of Physics: A direct test of E = mc2. Nature 2005, 438, 1096–1097. [Google Scholar] [CrossRef] [PubMed]
- Many other notable contributions have been made towards resolving to the 4/3 problems that have not been mentioned here. For more extensive discussions on the theory of the classical electron the reader is referred to References [16,23,24,25].
- Schiff, L.I.; Barnhill, M.V. Gravitation-Induced Electric Field near a Metal. Phys. Rev. 1966, 151, 1067–1071. [Google Scholar] [CrossRef]
- Dessler, A.J.; Michel, F.C.; Rorschach, H.E.; Trammell, G.T. Gravitationally Induced Electric Fields in Conductors. Phys. Rev. 1968, 168, 737–743. [Google Scholar] [CrossRef]
- Darling, T.W.; Rossi, F.; Opat, G.I.; Moorhead, G.F. The fall of charged particles under gravity: A study of experimental problems. Rev. Mod. Phys. 1992, 64, 237–257. [Google Scholar] [CrossRef]
- Witteborn, F.C.; Fairbank, W.M. Experimental Comparison of the Gravitational Force on Freely Falling Electrons and Metallic Electrons. Phys. Rev. Lett. 1967, 19, 1049–1052. [Google Scholar] [CrossRef]
- Fairbank, J.D.; Deaver, B.S., Jr.; Everitt, C.W.F.; Michelson, P.F. Near Zero: New Frontiers of Physics; W.H. Freeman and Company: New York, NY, USA, 1988; Chapter 7. [Google Scholar]
- Witteborn, F.C.; Fairbank, W.M. Apparatus for measuring the force of gravity on freely falling electrons. Rev. Sci. Instrum. 1977, 48, 1–11. [Google Scholar] [CrossRef]
- Lockhart, J.M.; Witteborn, F.C.; Fairbank, W.M. Evidence for a Temperature-Dependent Surface Shielding Effect in Cu. Phys. Rev. Lett. 1977, 38, 1220–1223. [Google Scholar] [CrossRef]
- Deslauriers, L.; Olmschenk, S.; Stick, D.; Hensinger, W.K.; Sterk, J.; Monroe, C. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 2006, 97, 103007. [Google Scholar] [CrossRef] [PubMed]
- Graupner, K.; Field, T.; Mayhew, C.A.; Hoffmann, T.H.; May, O.; Fedor, J.; Allan, M.; Fabrikant, I.I.; Illenberger, E.; Braun, M.; et al. Low-Energy Attachment to the Dichlorodifluoromethane (CCl2F2) Molecule. J. Phys. Chem. A 2010, 114, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Barwick, B.; Corder, C.; Strohaber, J.; Chandler-Smith, N.A.; Uiterwaal, C.J.; Batelaan, H. Laser-induced ultrafast electron emission from a field emission tip. New J. Phys. 2007, 9, 142. [Google Scholar] [CrossRef]
- Hommelhoff, P.; Kealhofer, C.; Kasevich, M.A. Ultrafast Electron Pulses from a Tungsten Tip Triggered by Low-Power Femtosecond Laser Pulses. Phys. Rev. Lett. 2006, 97, 247402. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, H.; Renz, A.; Hasselbach, F. Observation of Hanbury Brown—Twiss anticorrelations for free electrons. Nature 2002, 418, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, A.; Paasch-Colberg, T.; Karpowicz, N.; Apalkov, V.; Gerster, D.; Mühlbrandt, S.; Korbman, M.; Reichert, J.; Schultze, M.; Holzner, S.; Barth, J.V.; et al. Optical-field-induced current in dielectrics. Nature 2013, 493, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Huang, W.C.-W.; Batelaan, H.; Smythe, E.J.; Capasso, F. Measurement of the ultrafast temporal response of a plasmonic antenna. Ann. Phys. 2013, 525, L6–L11. [Google Scholar] [CrossRef]
- Van Oudheusden, T.; Pasmans, P.L.E.M.; van der Geer, S.B.; de Loos, M.J.; van der Wiel, M.J.; Luiten, O.J. Compression of Subrelativistic Space-Charge-Dominated Electron Bunches for Single-Shot Femtosecond Electron Diffraction. Phys. Rev. Lett. 2010, 105, 264801. [Google Scholar] [CrossRef] [PubMed]
- Freimund, D.L.; Aflatooni, K.; Batelaan, H. Observation of the Kapitza-Dirac effect. Nature 2001, 413, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Hebeisen, C.T. Generation, Characterization and Applications of Femtosecond Electron Pulses. Unpublished Doctoral Thesis, University of Toronto, Toronto, ON, Canada, 2009. [Google Scholar]
- Itikawa, Y. Cross Sections for Electron Collisions with Nitrogen Molecules. J. Phys. Chem. Ref. Data 2006, 35, 31–53. [Google Scholar] [CrossRef]
- Gallup, G.A.; Batelaan, H.; Gay, T.J. Quantum-Mechanical Analysis of a Longitudinal Stern-Gerlach Effect. Phys. Rev. Lett. 2001, 86, 4508–4511. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.S.; Gabrielse, G. Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 1986, 58, 233–311. [Google Scholar] [CrossRef]
- Bach, R.; Pope, D.; Liou, S.-H.; Batelaan, H. Controlled double-slit electron diffraction. New J. Phys. 2013, 15, 033018. [Google Scholar] [CrossRef]
- Integral Solutions can be Obtained from the “WolframAlpha Computational Knowledge Engine”. Available online: http://www.wolframalpha.com (accessed on 10 March 2015).
- Griffiths, D.J. Introduction to Electrodynamics, 3rd ed.; Addison Wesley: Upple Saddle River, NJ, USA, 1999; Chapter 3, Section 3.1; pp. 110–121. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, M.; Caprez, A.; Batelaan, H. On the Classical Coupling between Gravity and Electromagnetism. Atoms 2015, 3, 320-338. https://doi.org/10.3390/atoms3030320
Becker M, Caprez A, Batelaan H. On the Classical Coupling between Gravity and Electromagnetism. Atoms. 2015; 3(3):320-338. https://doi.org/10.3390/atoms3030320
Chicago/Turabian StyleBecker, Maria, Adam Caprez, and Herman Batelaan. 2015. "On the Classical Coupling between Gravity and Electromagnetism" Atoms 3, no. 3: 320-338. https://doi.org/10.3390/atoms3030320
APA StyleBecker, M., Caprez, A., & Batelaan, H. (2015). On the Classical Coupling between Gravity and Electromagnetism. Atoms, 3(3), 320-338. https://doi.org/10.3390/atoms3030320