The Leiden Atomic and Molecular Database (LAMDA): Current Status, Recent Updates, and Future Plans
Abstract
:1. Introduction
2. Potential Energy Surface and Scattering Calculations
2.1. Potential Energy Surface (PES)
2.2. Scattering Calculations
3. Current Status of LAMDA
Molecule | Collider | Temperature Range (K) | Reference | Quality Level |
---|---|---|---|---|
CHOH | H | 10–200 | [98] | B |
CHCN | H | 20–140 | [99] | D |
CH | H | 30–120 | [90] | C * |
HCN | H | 10–300 | [62] | A |
HCO | H | 10–300 | [100] | A |
HCS | H | 10–300 | [100] | C |
HO | H | 100 | [101] | D |
HNCO | H | 7–300 | [102] | A |
NH | H | 15–300 | [103] | B * |
NHD | H | 5–300 | [104] | A |
3.1. The LAMDA Data Format
3.2. Common Mistakes and How to Avoid Them
- Partner IDs are wrong, so that the program uses collisional data for the wrong partner. See Section 3.1 for the correct IDs.
- The actual number of lines does not match NLIN, and it is the same thing for NLEV, NTRANS, NPART, and NTEMP. To check for such mismatches, RADEX has a ‘debug’ option.
- Transitions occur between levels with the same energy. This happens for example if the spectroscopic data have insufficient frequency resolution. The obvious solution is to use higher resolution data.
- Datafiles contain false metastable states. This occurs especially due to incomplete line lists. In particular, the tables of energy levels and transitions must be tested to ensure that there are no levels that completely lack radiative transitions to any lower states, aside from true metastable states. Moreover, true metastable states should always be connected to at least one lower state by a tabulated collisional process. Otherwise, the solution of rate equations might suffer convergence problems, especially when chemical source and sink terms are ignored.
- Collisional data are practically always more limited in frequency and energy coverage than spectroscopic data, so to match the two, the spectroscopy needs to be trimmed. Care must be taken for undesired side effects.
4. Planned Updates of LAMDA
4.1. Notes on Individual Cases
4.2. Spectroscopic Updates
5. What to Do If Collisional Data Are Missing
6. Molecular Data Needs for the Future
6.1. Collisional Data
6.1.1. Radio and Far-Infrared Data
- PH as a key species in interstellar phosphorus chemistry [175,176] which also has application to Jupiter and exoplanet atmospheres [177]. Its structure resembles that of NH, but the barrier to inversion (umbrella-mode vibration) is so much higher in PH that the inversion splitting is unmeasurably small in the ground state and thus does not lead to any inversion transitions [178]. Hence, inversion-resolved collision rates for NH cannot be applied as such to PH, although inversion-resolved rates could be averaged and summed to provide rotational rates.
- HO as a key species in the chemistry of HO-like ions which is a useful probe of the cosmic-ray ionization rate [179] and for which collisional data are underway as part of the ERC Consolidator Grant COLLEXISM project (PI F. Lique).
- HCN, which is important to study the formation of interstellar carbon chains. Work is underway by Lique and Dawes. Ideally, a recipe should be developed to extend the calculations to HCN with n = 7, 9, 11, …
6.1.2. Near- and Mid-Infrared Data
6.2. Spectroscopic Data and Radiative Transfer Tools
- The interpretation of laboratory spectra through Hamiltonian models and the creation of synthetic line lists for comparison with observed spectra is commonly done with the programs SPFIT and SPCAT, developed by Herb Pickett. Currently, the use of these programs requires significant specialization and training. User-friendly versions of these programs are needed to ensure proper interpretation of laboratory spectra in the future. The PGOPHER11 package [192] is a major step in this direction.
- An update to RADEX is in preparation, which is able to include formation/destruction processes in the radiative transfer problem. Such calculations require state-to-state reactive collisional data, which exist only for some cases such as CH [194] and OH [131]. This new version of RADEX is also capable of multi-molecular spectral synthesis, similar to the programs XCLASS [195] and CASSIS12.
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Schöier, F.L.; van der Tak, F.F.S.; van Dishoeck, E.F.; Black, J.H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 2005, 432, 369–379. [Google Scholar] [CrossRef]
- Goldsmith, P.F.; Langer, W.D. Population Diagram Analysis of Molecular Line Emission. Astrophys. J. 1999, 517, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.S.P.; Schlöder, F.; Stutzki, J.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: A useful tool for astronomers and spectroscopists. J. Mol. Struct. 2005, 742, 215–227. [Google Scholar] [CrossRef]
- Pickett, H.M.; Poynter, R.L.; Cohen, E.A.; Delitsky, M.L.; Pearson, J.C.; Müller, H.S.P. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Barton, E.J.; Chubb, K.L.; Coles, P.A.; Diamantopoulou, S.; Gorman, M.N.; Hill, C.; Lam, A.Z.; et al. The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 2016, 327, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F.F.S.; Black, J.H.; Schöier, F.L.; Jansen, D.J.; van Dishoeck, E.F. A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios. Astron. Astrophys. 2007, 468, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F. Radiative Transfer and Molecular Data for Astrochemistry. In IAU Symposium; The Molecular Universe; Cernicharo, J., Bachiller, R., Eds.; CUP: Cambridge, UK, 2011; Volume 280, pp. 449–460. [Google Scholar] [CrossRef] [Green Version]
- Schlemmer, S. Molecular Spectroscopy of Astrophysical Molecules. In Gas-Phase Chemistry in Space; 2514-3433; IOP Publishing: London, UK, 2019; pp. 1–80. [Google Scholar] [CrossRef]
- Widicus Weaver, S.L. Millimeterwave and Submillimeterwave Laboratory Spectroscopy in Support of Observational Astronomy. Annu. Rev. Astron. Astrophys. 2019, 57, 79–112. [Google Scholar] [CrossRef]
- Roueff, E.; Lique, F. Molecular Excitation in the Interstellar Medium: Recent Advances in Collisional, Radiative, and Chemical Processes. Chem. Rev. 2013, 113, 8906–8938. [Google Scholar] [CrossRef] [Green Version]
- Dagdigian, P.J. Excitation of Astrophysical Molecules. In Gas-Phase Chemistry in Space; 2514-3433; IOP Publishing: London, UK, 2019; pp. 1–29. [Google Scholar] [CrossRef]
- Shirley, Y.L. The Critical Density and the Effective Excitation Density of Commonly Observed Molecular Dense Gas Tracers. Publ. Astron. Soc. Pac. 2015, 127, 299. [Google Scholar] [CrossRef]
- Kaastra, J.S.; Mewe, R.; Nieuwenhuijzen, H. SPEX: A new code for spectral analysis of X & UV spectra. In UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas; Universal Academy Press: Tokyo, Japan, 1996; pp. 411–414. [Google Scholar]
- Dubernet, M.L.; Alexander, M.H.; Ba, Y.A.; Balakrishnan, N.; Balança, C.; Ceccarelli, C.; Cernicharo, J.; Daniel, F.; Dayou, F.; Doronin, M.; et al. BASECOL2012: A collisional database repository and web service within the Virtual Atomic and Molecular Data Centre (VAMDC). Astron. Astrophys. 2013, 553, A50. [Google Scholar] [CrossRef] [Green Version]
- Launay, J.M.; Roueff, E. Fine structure excitation of carbon and oxygen by atomic hydrogen impact. Astron. Astrophys. 1977, 56, 289–292. [Google Scholar]
- Johnson, C.T.; Burke, P.G.; Kingston, A.E. Electron scattering from the fine structure levels within the 1s22s22p23Pe ground state of C I. J. Phys. B At. Mol. Phys. 1987, 20, 2553–2563. [Google Scholar] [CrossRef]
- Roueff, E.; Le Bourlot, J. Excitation of forbidden C I fine structure transitions by protons. Astron. Astrophys. 1990, 236, 515–518. [Google Scholar]
- Staemmler, V.; Flower, D.R. Excitation of the C(2p2. 3Pj) fine structure states in collisions with He(1s2 1S0). J. Phys. B At. Mol. Phys. 1991, 24, 2343–2351. [Google Scholar] [CrossRef]
- Schroder, K.; Staemmler, V.; Smith, M.D.; Flower, D.R.; Jaquet, R. Excitation of the fine-structure transitions of C in collisions with ortho- and para-H2. J. Phys. B At. Mol. Phys. 1991, 24, 2487–2502. [Google Scholar] [CrossRef]
- Barinovs, Ğ.; van Hemert, M.C.; Krems, R.; Dalgarno, A. Fine-Structure Excitation of C+ and Si+ by Atomic Hydrogen. Astrophys. J. 2005, 620, 537–541. [Google Scholar] [CrossRef]
- Wilson, N.J.; Bell, K.L. Effective collision strengths for ground-state and 2s22p-2s2p2 fine-structure transitions in CII. Mon. Not. R. Astron. Soc. 2002, 337, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Werfelli, G.; Halvick, P.; Stoecklin, T.; Faure, A.; Wiesenfeld, L.; Dagdigian, P.J. Spin-orbit quenching of the C+(2P) ion by collisions with para- and ortho-H2. J. Chem. Phys. 2013, 138, 204314. [Google Scholar] [CrossRef] [Green Version]
- Wiesenfeld, L.; Goldsmith, P.F. C+ in the Interstellar Medium: Collisional Excitation by H2 Revisited. Astrophys. J. 2014, 780, 183. [Google Scholar] [CrossRef] [Green Version]
- Tayal, S.S. Electron Excitation Collision Strengths for Singly Ionized Nitrogen. Astrophys. J. Suppl. 2011, 195, 12. [Google Scholar] [CrossRef]
- Lique, F.; Kłos, J.; Alexander, M.H.; Le Picard, S.D.; Dagdigian, P.J. Fine-structure relaxation of O(3P) induced by collisions with He, H and H2. Mon. Not. R. Astron. Soc. 2018, 474, 2313–2322. [Google Scholar] [CrossRef]
- Bell, K.L.; Berrington, K.A.; Thomas, M.R.J. Electron impact excitation of the ground-state P fine-structure levels in atomic oxygen. Mon. Not. R. Astron. Soc. 1998, 293, L83–L87. [Google Scholar] [CrossRef] [Green Version]
- Spirko, J.A.; Zirbel, J.J.; Hickman, A.P. Quantum mechanical scattering calculations for charge exchange: O + H+↔ O+ + H. J. Phys. B At. Mol. Phys. 2003, 36, 1645–1662. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsson, E.; Krems, R.V.; Dalgarno, A. Fine-Structure Excitation of O I and C I by Impact with Atomic Hydrogen. Astrophys. J. 2007, 654, 1171–1174. [Google Scholar] [CrossRef]
- Yang, C.H.; Sarma, G.; Parker, D.H.; Ter Meulen, J.J.; Wiesenfeld, L. State-to-state differential and relative integral cross sections for rotationally inelastic scattering of H2O by hydrogen. J. Chem. Phys. 2011, 134, 204308. [Google Scholar] [CrossRef] [Green Version]
- Chefdeville, S.; Kalugina, Y.; van de Meerakker, S.Y.T.; Naulin, C.; Lique, F.; Costes, M. Observation of Partial Wave Resonances in Low-Energy O2-H2 Inelastic Collisions. Science 2013, 341, 1094–1096. [Google Scholar] [CrossRef]
- Chefdeville, S.; Stoecklin, T.; Naulin, C.; Jankowski, P.; Szalewicz, K.; Faure, A.; Costes, M.; Bergeat, A. Experimental and Theoretical Analysis of Low-energy CO + H2 Inelastic Collisions. Astrophys. J. Lett. 2015, 799, L9. [Google Scholar] [CrossRef]
- Vogels, S.N.; Karman, T.; Kłos, J.; Besemer, M.; Onvlee, J.; van der Avoird, A.; Groenenboom, G.C.; van de Meerakker, S.Y.T. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard. Nat. Chem. 2018, 10, 435–440. [Google Scholar] [CrossRef]
- Hampel, C.; Peterson, K.A.; Werner, H.J. A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods. Chem. Phys. Lett. 1992, 190, 1–12. [Google Scholar] [CrossRef]
- Kodrycka, M.; Patkowski, K. Platinum, gold, and silver standards of intermolecular interaction energy calculations. J. Chem. Phys. 2019, 151, 070901. [Google Scholar] [CrossRef] [PubMed]
- Adler, T.B.; Knizia, G.; Werner, H. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 2007, 127, 221106. [Google Scholar] [CrossRef] [PubMed]
- Lique, F. Temperature dependence of the fine-structure resolved rate coefficients for collisions of O2(X3Σg−) with He. J. Chem. Phys. 2010, 132, 044311. [Google Scholar] [CrossRef]
- Walker, K.M.; Dumouchel, F.; Lique, F.; Dawes, R. The first potential energy surfaces for the C6H−-H2 and C6H−-He collisional systems and their corresponding inelastic cross sections. J. Chem. Phys. 2016, 145, 024314. [Google Scholar] [CrossRef]
- Faure, A.; Jankowski, P.; Stoecklin, T.; Szalewicz, K. On the importance of full-dimensionality in low-energy molecular scattering calculations. Sci. Rep. 2016, 6, 28449. [Google Scholar] [CrossRef] [Green Version]
- Tennyson, J.; Faure, A. Electron Collision Processes. In Gas-Phase Chemistry in Space; 2514-3433; IOP Publishing: London, UK, 2019; pp. 1–26. [Google Scholar] [CrossRef]
- Tennyson, J. Electron-molecule collision calculations using the R-matrix method. Phys. Rep. 2010, 491, 29–76. [Google Scholar] [CrossRef]
- Ajili, Y.; Hammami, K. Induced rotational excitation of the fluoromethylidynium 12CF+ and 13CF+ through collision with helium. Astron. Astrophys. 2013, 556, A82. [Google Scholar] [CrossRef] [Green Version]
- Dagdigian, P.J. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen. Mon. Not. R. Astron. Soc. 2018, 475, 5480–5486. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Spielfiedel, A.; Feautrier, N.; Schneider, I.F.; Kłos, J.; Alexander, M.H. Rotational excitation of CN(X 2Σ+) by He: Theory and comparison with experiments. J. Chem. Phys. 2010, 132, 024303. [Google Scholar] [CrossRef]
- Allison, A.C.; Dalgarno, A. Rotational Excitation of CN by Electron Impact. Astron. Astrophys. 1971, 13, 331. [Google Scholar]
- Kalugina, Y.; Lique, F. Hyperfine excitation of CN by para- and ortho-H2. Mon. Not. R. Astron. Soc. 2015, 446, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Stancil, P.C.; Balakrishnan, N.; Forrey, R.C. Rotational Quenching of CO due to H2 Collisions. Astrophys. J. 2010, 718, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Spielfiedel, A.; Cernicharo, J. Rotational excitation of carbon monosulfide by collisions with helium. Astron. Astrophys. 2006, 451, 1125–1132. [Google Scholar] [CrossRef]
- Lanza, M.; Kalugina, Y.; Wiesenfeld, L.; Faure, A.; Lique, F. New insights on the HCl abundance in the interstellar medium. Mon. Not. R. Astron. Soc. 2014, 443, 3351–3358. [Google Scholar] [CrossRef]
- Reese, C.; Stoecklin, T.; Voronin, A.; Rayez, J.C. Rotational excitation and de-excitation of HF molecules by He atoms. Astron. Astrophys. 2005, 430, 1139–1142. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F.F.S.; Ossenkopf, V.; Nagy, Z.; Faure, A.; Röllig, M.; Bergin, E.A. Detection of HF emission from the Orion Bar. Astron. Astrophys. 2012, 537, L10. [Google Scholar] [CrossRef] [Green Version]
- Guillon, G.; Stoecklin, T. Rotational relaxation and excitation rates of hydrogen fluoride in collision with ortho- and para-H2. Mon. Not. R. Astron. Soc. 2012, 420, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; van der Tak, F.F.S.; Kłos, J.; Bulthuis, J.; Alexander, M.H. The importance of non-LTE models for the interpretation of observations of interstellar NO. Astron. Astrophys. 2009, 493, 557–563. [Google Scholar] [CrossRef]
- Offer, A.R.; van Hemert, M.C.; van Dishoeck, E.F. Rotationally inelastic and hyperfine resolved cross sections for OH-H2 collisions. Calculations using a new ab initio potential surface. J. Chem. Phys. 1994, 100, 362–378. [Google Scholar] [CrossRef]
- Faure, A.; Lique, F. The impact of collisional rate coefficients on molecular hyperfine selective excitation. Mon. Not. R. Astron. Soc. 2012, 425, 740–748. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F.F.S.; Nagy, Z.; Ossenkopf, V.; Makai, Z.; Black, J.H.; Faure, A.; Gerin, M.; Bergin, E.A. Spatially extended OH+ emission from the Orion Bar and Ridge. Astron. Astrophys. 2013, 560, A95. [Google Scholar] [CrossRef] [Green Version]
- Balança, C.; Dayou, F.; Faure, A.; Wiesenfeld, L.; Feautrier, N. Rotationally inelastic collisions of SiO with H2. Mon. Not. R. Astron. Soc. 2018, 479, 2692–2701. [Google Scholar] [CrossRef]
- Dayou, F.; Balança, C. Rotational excitation of SiO by collisions with helium. Astron. Astrophys. 2006, 459, 297–305. [Google Scholar] [CrossRef]
- Lique, F.; Dubernet, M.L.; Spielfiedel, A.; Feautrier, N. Rotational excitation of sulfur monoxide in collision with helium at high temperature. Astron. Astrophys. 2006, 450, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Arthurs, A.M.; Dalgarno, A. The theory of scattering by a rigid rotator. Proc. R. Soc. Lond. Ser. A 1960, 256, 540. [Google Scholar]
- Faure, A.; Crimier, N.; Ceccarelli, C.; Valiron, P.; Wiesenfeld, L.; Dubernet, M.L. Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2. Astron. Astrophys. 2007, 472, 1029. [Google Scholar] [CrossRef]
- Faure, A.; Lique, F.; Wiesenfeld, L. Collisional excitation of HC3N by para- and ortho-H2. Mon. Not. R. Astron. Soc. 2016, 460, 2103–2109. [Google Scholar] [CrossRef] [Green Version]
- Wernli, M.; Wiesenfeld, L.; Faure, A.; Valiron, P. Rotational excitation of HC_3N by H2 and He at low temperatures. Astron. Astrophys. 2007, 464, 1147–1154. [Google Scholar] [CrossRef]
- Ndengué, S.; Dawes, R.; Gatti, F.; Meyer, H.D. Atom-triatom rigid rotor inelastic scattering with the MultiConfiguration Time Dependent Hartree approach. Chem. Phys. Lett. 2017, 668, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Semenov, A.; Babikov, D. MQCT. I. Inelastic Scattering of Two Asymmetric-Top Rotors with Application to H2O + H2O. J. Phys. Chem. A 2017, 121, 4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quack, M.; Troe, J. Complex Formation in Reactive and Inelastic Scattering: Statistical Adiabatic Channel Model of Unimolecular Processes III. Ber. Bunsenges. Phys. Chem. 1975, 79, 170. [Google Scholar] [CrossRef]
- Loreau, J.; Lique, F.; Faure, A. An Efficient Statistical Method to Compute Molecular Collisional Rate Coefficients. Astrophys. J. Lett. 2018, 853, L5. [Google Scholar] [CrossRef]
- Dagdigian, P.J. Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms. J. Chem. Phys. 2017, 146, 224308. [Google Scholar] [CrossRef] [Green Version]
- Corey, G.C.; Alexander, M.H. The infinite order sudden approximation for collisions involving molecules in 2Pi electronic states. J. Chem. Phys. 1986, 85, 5652–5659. [Google Scholar] [CrossRef]
- Faure, A.; Kokoouline, V.; Greene, C.H.; Tennyson, J. Near-threshold rotational excitation of molecular ions by electron impact. J. Phys. B At. Mol. Phys. 2006, 39, 4261–4273. [Google Scholar] [CrossRef] [Green Version]
- Shafir, D.; Novotny, S.; Buhr, H.; Altevogt, S.; Faure, A.; Grieser, M.; Harvey, A.G.; Heber, O.; Hoffmann, J.; Kreckel, H.; et al. Rotational Cooling of HD+ Molecular Ions by Superelastic Collisions with Electrons. Phys. Rev. Lett. 2009, 102, 223202. [Google Scholar] [CrossRef]
- Faure, A.; Wiesenfeld, L.; Wernli, M.; Valiron, P. Rotational excitation of water by hydrogen molecules: Comparison of results from classical and quantum mechanics. J. Chem. Phys. 2006, 124, 214310. [Google Scholar] [CrossRef]
- Motapon, O.; Pop, N.; Argoubi, F.; Mezei, J.Z.; Epee, M.D.E.; Faure, A.; Telmini, M.; Tennyson, J.; Schneider, I.F. Rotational transitions induced by collisions of HD+ ions with low-energy electrons. Phys. Rev. A 2014, 90, 012706. [Google Scholar] [CrossRef] [Green Version]
- Čurík, R.; Greene, C.H. Inelastic low-energy collisions of electrons with HeH+: Rovibrational excitation and dissociative recombination. J. Chem. Phys. 2017, 147, 054307. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.; Faure, A.; Tennyson, J. CN excitation and electron densities in diffuse molecular clouds. Mon. Not. R. Astron. Soc. 2013, 435, 3541–3546. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.R.; Faure, A.; Tennyson, J. Electron-impact excitation of diatomic hydride cations II: OH+ and SH+. Mon. Not. R. Astron. Soc. 2018, 476, 2931–2937. [Google Scholar] [CrossRef] [Green Version]
- Spielfiedel, A.; Feautrier, N.; Najar, F.; Ben Abdallah, D.; Dayou, F.; Senent, M.L.; Lique, F. Fine and hyperfine excitation of C2H by collisions with He at low temperature. Mon. Not. R. Astron. Soc. 2012, 421, 1891–1896. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Ossenkopf, V.; Van der Tak, F.F.S.; Faure, A.; Makai, Z.; Bergin, E.A. C2H observations toward the Orion Bar. Astron. Astrophys. 2015, 578, A124. [Google Scholar] [CrossRef]
- Dagdigian, P.J. Hyperfine excitation of C2H in collisions with ortho- and para-H2. Mon. Not. R. Astron. Soc. 2018, 479, 3227–3231. [Google Scholar] [CrossRef]
- Dagdigian, P.J.; Lique, F. Collisional excitation of CH2 rotational/fine-structure levels by helium. Mon. Not. R. Astron. Soc. 2018, 473, 4824–4831. [Google Scholar] [CrossRef]
- Dumouchel, F.; Faure, A.; Lique, F. The rotational excitation of HCN and HNC by He: Temperature dependence of the collisional rate coefficients. Mon. Not. R. Astron. Soc. 2010, 406, 2488–2492. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Varambhia, H.N.; Stoecklin, T.; Tennyson, J. Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC. Mon. Not. R. Astron. Soc. 2007, 382, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Hernández Vera, M.; Lique, F.; Dumouchel, F.; Hily-Blant, P.; Faure, A. The rotational excitation of the HCN and HNC molecules by H2 revisited. Mon. Not. R. Astron. Soc. 2017, 468, 1084–1091. [Google Scholar] [CrossRef]
- Flower, D.R. Rotational excitation of HCO by H_2. Mon. Not. R. Astron. Soc. 1999, 305, 651–653. [Google Scholar] [CrossRef]
- Faure, A.; Wiesenfeld, L.; Scribano, Y.; Ceccarelli, C. Rotational excitation of mono- and doubly-deuterated water by hydrogen molecules. Mon. Not. R. Astron. Soc. 2012, 420, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Daniel, F.; Dubernet, M.L.; Grosjean, A. Rotational excitation of 45 levels of ortho/para-H2O by excited ortho/para-H2 from 5 K to 1500 K: State-to-state, effective, and thermalized rate coefficients. Astron. Astrophys. 2011, 536, A76. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Josselin, E. Collisional excitation of water in warm astrophysical media. I. Rate coefficients for rovibrationally excited states. Astron. Astrophys. 2008, 492, 257–264. [Google Scholar] [CrossRef]
- Daniel, F.; Dubernet, M.L.; Meuwly, M.; Cernicharo, J.; Pagani, L. Collisional excitation rate coefficients of N2H+ by He. Mon. Not. R. Astron. Soc. 2005, 363, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Green, S.; Chapman, S. Collisional excitation of interstellar molecules: Linear molecules CO, CS, OCS, and HC3N. Astrophys. J. Suppl. 1978, 37, 169–194. [Google Scholar] [CrossRef]
- Chandra, S.; Kegel, W.H. Collisional rates for asymmetrical top molecules. Astron. Astrophys. Suppl. Ser. 2000, 142, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Balança, C.; Spielfiedel, A.; Feautrier, N. Collisional excitation of sulfur dioxide by molecular hydrogen in warm molecular clouds. Mon. Not. R. Astron. Soc. 2016, 460, 3766–3771. [Google Scholar] [CrossRef]
- Van der Tak, F.F.S.; Müller, H.S.P.; Harding, M.E.; Gauss, J. Hyperfine structure in the J = 1-0 transitions of DCO, DNC, and HN13C: Astronomical observations and quantum-chemical calculations. Astron. Astrophys. 2009, 507, 347–354. [Google Scholar] [CrossRef]
- Scribano, Y.; Faure, A.; Wiesenfeld, L. Communication: Rotational excitation of interstellar heavy water by hydrogen molecules. J. Chem. Phys. 2010, 133, 231105. [Google Scholar] [CrossRef] [Green Version]
- Hogerheijde, M.R.; van der Tak, F.F.S. An accelerated Monte Carlo method to solve two-dimensional radiative transfer and molecular excitation. With applications to axisymmetric models of star formation. Astron. Astrophys. 2000, 362, 697–710. [Google Scholar]
- Brinch, C.; Hogerheijde, M.R. LIME—A flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths. Astron. Astrophys. 2010, 523, A25. [Google Scholar] [CrossRef]
- Krumholz, M.R. DESPOTIC—A new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. Mon. Not. R. Astron. Soc. 2014, 437, 1662–1680. [Google Scholar] [CrossRef]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Revista Mexicana de Astronomía y Astrofísica 2017, 53, 385–438. [Google Scholar]
- Rabli, D.; Flower, D.R. The rotational excitation of methanol by molecular hydrogen. Mon. Not. R. Astron. Soc. 2010, 406, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Green, S. Collisional Excitation of Interstellar Methyl Cyanide. Astrophys. J. 1986, 309, 331. [Google Scholar] [CrossRef]
- Wiesenfeld, L.; Faure, A. Rotational quenching of H2CO by molecular hydrogen: Cross-sections, rates and pressure broadening. Mon. Not. R. Astron. Soc. 2013, 432, 2573–2578. [Google Scholar] [CrossRef]
- Offer, A.R.; van Hemert, M.C. Rotational excitation of H3O+: The effect of the inversion motion on the collisional cross sections. Chem. Phys. 1992, 163, 83–89. [Google Scholar] [CrossRef]
- Sahnoun, E.; Wiesenfeld, L.; Hammami, K.; Jaidane, N. van der Waals interaction of HNCO and H2: Potential Energy Surface and Rotational Energy Transfer. J. Phys. Chem. A 2018, 122, 3004–3012. [Google Scholar] [CrossRef]
- Danby, G.; Flower, D.R.; Valiron, P.; Schilke, P.; Walmsley, C.M. A recalibration of the interstellar ammonia thermometer. Mon. Not. R. Astron. Soc. 1988, 235, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Daniel, F.; Faure, A.; Wiesenfeld, L.; Roueff, E.; Lis, D.C.; Hily-Blant, P. Collisional excitation of singly deuterated ammonia NH2D by H2. Mon. Not. R. Astron. Soc. 2014, 444, 2544–2554. [Google Scholar] [CrossRef] [Green Version]
- Bouhafs, N.; Rist, C.; Daniel, F.; Dumouchel, F.; Lique, F.; Wiesenfeld, L.; Faure, A. Collisional excitation of NH3 by atomic and molecular hydrogen. Mon. Not. R. Astron. Soc. 2017, 470, 2204–2211. [Google Scholar] [CrossRef]
- Lique, F.; Kłos, J.; Le Picard, S.D. Fine-structure transitions of interstellar atomic sulfur and silicon induced by collisions with helium. Phys. Chem. Chem. Phys. Inc. Faraday Trans. 2018, 20, 5427–5434. [Google Scholar] [CrossRef] [PubMed]
- Dagdigian, P.J. Collisional excitation of ArH+ by hydrogen atoms. Mon. Not. R. Astron. Soc. 2018, 477, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.R.; Faure, A.; Tennyson, J. Electron-impact excitation of diatomic hydride cations - I. HeH+, CH+, ArH+. Mon. Not. R. Astron. Soc. 2016, 455, 3281–3287. [Google Scholar] [CrossRef] [Green Version]
- Desrousseaux, B.; Lique, F. Collisional energy transfer in the HeH+ - H reactive system. J. Chem. Phys. 2020, 152, 074303. [Google Scholar] [CrossRef]
- Hammami, K.; Owono Owono, L.C.; Stäuber, P. Rotational excitation of methylidynium (CH) by a helium atom at high temperature. Astron. Astrophys. 2009, 507, 1083–1086. [Google Scholar] [CrossRef] [Green Version]
- Turpin, F.; Stoecklin, T.; Voronin, A. Rotational excitation and de-excitation of CH+ molecules by 4He atoms. Astron. Astrophys. 2010, 511, A28. [Google Scholar] [CrossRef]
- Lique, F. Revisited study of the ro-vibrational excitation of H2 by H: Towards a revision of the cooling of astrophysical media. Mon. Not. R. Astron. Soc. 2015, 453, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Dumouchel, F.; Kłos, J.; Toboła, R.; Bacmann, A.; Maret, S.; Hily-Blant, P.; Faure, A.; Lique, F. Fine and hyperfine excitation of NH and ND by He: On the importance of calculating rate coefficients of isotopologues. J. Chem. Phys. 2012, 137, 114306. [Google Scholar] [CrossRef]
- Toboła, R.; Kłos, J.; Lique, F.; Chałasiński, G.; Alexander, M.H. Rotational excitation and de-excitation of PN molecules by He atoms. Astron. Astrophys. 2007, 468, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Jiménez-Serra, I.; Viti, S.; Marinakis, S. Collisional excitation of interstellar PO(X2Π) by He: New ab initio potential energy surfaces and scattering calculations. Phys. Chem. Chem. Phys. Inc. Faraday Trans. 2018, 20, 5407–5414. [Google Scholar] [CrossRef] [PubMed]
- Bouhafs, N.; Bacmann, A.; Faure, A.; Lique, F. The excitation of NH2 in the interstellar medium. Mon. Not. R. Astron. Soc. 2019, 490, 2178–2182. [Google Scholar] [CrossRef]
- Ben Abdallah, D.; Hammami, K.; Najar, F.; Jaidane, N.; Ben Lakhdar, Z.; Senent, M.L.; Chambaud, G.; Hochlaf, M. Low-Temperature Rate Constants for Rotational Excitation and De-excitation of C3 (X1Σg+) by Collisions with He (1S). Astrophys. J. 2008, 686, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Hammami, K.; Lique, F.; Jaïdane, N.; Ben Lakhdar, Z.; Spielfiedel, A.; Feautrier, N. Rotational excitation of HOCO+ by helium at low temperature. Astron. Astrophys. 2007, 462, 789–794. [Google Scholar] [CrossRef]
- Faure, A.; Szalewicz, K.; Wiesenfeld, L. Potential energy surface and rotational cross sections for methyl formate colliding with helium. J. Chem. Phys. 2011, 135, 024301. [Google Scholar] [CrossRef]
- Faure, A.; Remijan, A.J.; Szalewicz, K.; Wiesenfeld, L. Weak Maser Emission of Methyl Formate toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey. Astrophys. J. 2014, 783, 72. [Google Scholar] [CrossRef] [Green Version]
- Kłos, J.; Lique, F. The rotational excitation of SiS by para- and ortho-H2. Mon. Not. R. Astron. Soc. 2008, 390, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Castro, C.; Doan, K.; Klemka, M.; Forrey, R.C.; Yang, B.; Stancil, P.C.; Balakrishnan, N. Inelastic cross sections and rate coefficients for collisions between CO and H2. Mol. Astrophys. 2017, 6, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Balakrishnan, N.; Walker, K.M.; Stancil, P.C.; Thi, W.F.; Kamp, I.; van der Avoird, A.; Groenenboom, G.C. Quantum Calculation of Inelastic CO Collisions with H. III. Rate Coefficients for Ro-vibrational Transitions. Astrophys. J. 2015, 813, 96. [Google Scholar] [CrossRef] [Green Version]
- Yazidi, O.; Ben Abdallah, D.; Lique, F. Revised study of the collisional excitation of HCO+ by H2(j = 0). Mon. Not. R. Astron. Soc. 2014, 441, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Daniel, F.; Pagani, L.; Feautrier, N. Hyperfine excitation of N2H+ by H2: Towards a revision of N2H+ abundance in cold molecular clouds. Mon. Not. R. Astron. Soc. 2015, 446, 1245–1251. [Google Scholar] [CrossRef]
- Zhang, Z.E.; Cumbee, R.S.; Stancil, P.C.; Ferland, G.J. Ro-vibrational analysis of SiO in UV-irradiated environments. Mol. Astrophys. 2018, 13, 6–21. [Google Scholar] [CrossRef]
- Ndengué, S.A.; Dawes, R.; Gatti, F. Rotational Excitations in CO-CO Collisions at Low Temperature: Time-Independent and Multiconfigurational Time-Dependent Hartree Calculations. J. Phys. Chem. A 2015, 119, 7712–7723. [Google Scholar] [CrossRef] [PubMed]
- Denis-Alpizar, O.; Stoecklin, T.; Guilloteau, S.; Dutrey, A. New ratecoefficients of CS in collision with para- and ortho-H2 and astrophysical implications. Mon. Not. R. Astron. Soc. 2018, 478, 1811–1817. [Google Scholar] [CrossRef]
- Desrousseaux, B.; Lique, F. The rotational excitation of HF by H. Mon. Not. R. Astron. Soc. 2018, 476, 4719–4724. [Google Scholar] [CrossRef]
- Gómez-Carrasco, S.; Godard, B.; Lique, F.; Bulut, N.; Kłos, J.; Roncero, O.; Aguado, A.; Aoiz, F.J.; Castillo, J.F.; Goicoechea, J.R.; et al. OH+ in Astrophysical Media: State-to-state Formation Rates, Einstein Coefficients and Inelastic Collision Rates with He. Astrophys. J. 2014, 794, 33. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Bulut, N.; Roncero, O. Hyperfine excitation of OH+ by H. Mon. Not. R. Astron. Soc. 2016, 461, 4477–4481. [Google Scholar] [CrossRef] [Green Version]
- Daniel, F.; Faure, A.; Dagdigian, P.J.; Dubernet, M.L.; Lique, F.; Forêts, G.P.d. Collisional excitation of water by hydrogen atoms. Mon. Not. R. Astron. Soc. 2015, 446, 2312–2316. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Kalugina, Y.; Chefdeville, S.; van de Meerakker, S.Y.T.; Costes, M.; Naulin, C. Collisional excitation of O2 by H2: The validity of LTE models in interpreting O2 observations. Astron. Astrophys. 2014, 567, A22. [Google Scholar] [CrossRef] [Green Version]
- Lique, F.; Faure, A. Collisional excitation and dissociation of HCl by H. Mon. Not. R. Astron. Soc. 2017, 472, 738–743. [Google Scholar] [CrossRef]
- Ben Khalifa, M.; Wiesenfeld, L.; Hammami, K. Interaction of the simple carbene c-C3H2 with H2: Potential energy surface and low-energy scattering. Phys. Chem. Chem. Phys. Inc. Faraday Trans. 2019, 21, 9996–10002. [Google Scholar] [CrossRef] [PubMed]
- Hugo, E.; Asvany, O.; Schlemmer, S. H3++H2 isotopic system at low temperatures: Microcanonical model and experimental study. J. Chem. Phys. 2009, 130, 164302. [Google Scholar] [CrossRef] [PubMed]
- Daniel, F.; Rist, C.; Faure, A.; Roueff, E.; Gérin, M.; Lis, D.C.; Hily-Blant, P.; Bacmann, A.; Wiesenfeld, L. Collisional excitation of doubly and triply deuterated ammonia ND2H and ND3 by H2. Mon. Not. R. Astron. Soc. 2016, 457, 1535–1549. [Google Scholar] [CrossRef] [Green Version]
- Pagani, L.; Bourgoin, A.; Lique, F. A method to measure CO and N2 depletion profiles inside prestellar cores. Astron. Astrophys. 2012, 548, L4. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.J.; Pagani, L.; Lai, S.P.; Lefèvre, C.; Lique, F. Physical and chemical modeling of the starless core L1512. arXiv 2020, arXiv:2002.01346. [Google Scholar]
- Flower, D.R.; Lique, F. Excitation of the hyperfine levels of 13CN and C15N in collisions with H2 at low temperatures. Mon. Not. R. Astron. Soc. 2015, 446, 1750–1755. [Google Scholar] [CrossRef]
- Daniel, F.; Faure, A.; Pagani, L.; Lique, F.; Gérin, M.; Lis, D.; Hily-Blant, P.; Bacmann, A.; Roueff, E. N2H+ and N15NH+ toward the prestellar core 16293E in L1689N. Astron. Astrophys. 2016, 592, A45. [Google Scholar] [CrossRef] [Green Version]
- Dagdigian, P.J. Interaction of the H2S molecule with molecular hydrogen: Ab initio potential energy surface and scattering calculations. J. Chem. Phys. 2020, 152, 074307. [Google Scholar] [CrossRef]
- Van der Tak, F.F.S.; Schilke, P.; Müller, H.S.P.; Lis, D.C.; Phillips, T.G.; Gerin, M.; Roueff, E. Triply deuterated ammonia in NGC 1333. Astron. Astrophys. 2002, 388, L53–L56. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F.F.S.; Walmsley, C.M.; Herpin, F.; Ceccarelli, C. Water in the envelopes and disks around young high-mass stars. Astron. Astrophys. 2006, 447, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Putaud, T.; Michaut, X.; Le Petit, F.; Roueff, E.; Lis, D.C. The water line emission and ortho-to-para ratio in the Orion Bar photon-dominated region. Astron. Astrophys. 2019, 632, A8. [Google Scholar] [CrossRef] [Green Version]
- Ben Abdallah, D.; Najar, F.; Jaidane, N.; Dumouchel, F.; Lique, F. Hyperfine excitation of HCN by H2 at low temperature. Mon. Not. R. Astron. Soc. 2012, 419, 2441–2447. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Gordon, I.E.; Rothman, L.S.; Tan, Y.; Hu, S.M.; Kassi, S.; Campargue, A.; Medvedev, E.S. Rovibrational Line Lists for Nine Isotopologues of the CO Molecule in the X 1Σ+ Ground Electronic State. Astrophys. J. Suppl. 2015, 216, 15. [Google Scholar] [CrossRef] [Green Version]
- Woitke, P.; Min, M.; Thi, W.F.; Roberts, C.; Carmona, A.; Kamp, I.; Ménard, F.; Pinte, C. Modelling mid-infrared molecular emission lines from T Tauri stars. Astron. Astrophys. 2018, 618, A57. [Google Scholar] [CrossRef]
- Krems, R.V.; Jamieson, M.J.; Dalgarno, A. The 1D-3P Transitions in Atomic Oxygen Induced by Impact with Atomic Hydrogen. Astrophys. J. 2006, 647, 1531–1534. [Google Scholar] [CrossRef]
- Stancil, P.C.; Schultz, D.R.; Kimura, M.; Gu, J.P.; Hirsch, G.; Buenker, R.J. Charge transfer in collisions of O+ with H and H+ with O. Astron. Astrophys. Suppl. Ser. 1999, 140, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Desrousseaux, B.; Quintas-Sanchez, E.; Dawes, R.; Lique, F. Collisional Excitation of CF+ by H2: Potential Energy Surface and Rotational Cross Sections. J. Phys. Chem. A 2019, 123, 9637–9643. [Google Scholar] [CrossRef]
- Black, J.H.; van Dishoeck, E.F.; Willner, S.P.; Woods, R.C. Interstellar Absorption Lines toward NGC 2264 and AFGL 2591: Abundances of H 2, H + 3, and CO. Astrophys. J. 1990, 358, 459. [Google Scholar] [CrossRef]
- Stark, R.; van der Tak, F.F.S.; van Dishoeck, E.F. Detection of Interstellar H2D+ Emission. Astrophys. J. Lett. 1999, 521, L67–L70. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F.F.S.; Caselli, P.; Ceccarelli, C. Line profiles of molecular ions toward the pre-stellar core LDN 1544. Astron. Astrophys. 2005, 439, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Van der Tak, F.F.S.; Weiß, A.; Liu, L.; Güsten, R. The ionization rates of galactic nuclei and disks from Herschel/HIFI observations of water and its associated ions. Astron. Astrophys. 2016, 593, A43. [Google Scholar] [CrossRef] [Green Version]
- Itikawa, Y.; Mason, N. Rotational excitation of molecules by electron collisions. Phys.Rep. 2005, 414, 1–41. [Google Scholar] [CrossRef]
- Itikawa, Y.; Takayanagi, K. Rotational Transition in Polar Molecules by Electron Collisions: Applications to CN and HCl. J. Phys. Soc. Jpn. 1969, 26, 1254–1264. [Google Scholar] [CrossRef]
- Crovisier, J.; Le Bourlot, J. Infrared and microwave fluorescence of carbon monoxide in comets. Astron. Astrophys. 1983, 123, 61–66. [Google Scholar]
- Semenov, A.; Babikov, D. Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments. J. Phys. Chem. Lett. 2015, 6, 1854. [Google Scholar] [CrossRef] [Green Version]
- Rabli, D.; Flower, D.R. Rotationally and torsionally inelastic scattering of methanol on helium. Mon. Not. R. Astron. Soc. 2011, 411, 2093–2098. [Google Scholar] [CrossRef]
- Stoecklin, T.; Denis-Alpizar, O.; Halvick, P.; Dubernet, M.L. Ro-vibrational relaxation of HCN in collisions with He: Rigid bender treatment of the bending-rotation interaction. J. Chem. Phys. 2013, 139, 124317. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, P.; Qu, C.; Stancil, P.C.; Bowman, J.M.; Balakrishnan, N.; Forrey, R.C. Inelastic vibrational dynamics of CS in collision with H2 using a full-dimensional potential energy surface. Phys. Chem. Chem. Phys. Inc. Faraday Trans. 2018, 20, 28425–28434. [Google Scholar] [CrossRef]
- McGuire, B.A.; Burkhardt, A.M.; Kalenskii, S.; Shingledecker, C.N.; Remijan, A.J.; Herbst, E.; McCarthy, M.C. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 2018, 359, 202–205. [Google Scholar] [CrossRef] [Green Version]
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180. [Google Scholar] [CrossRef] [Green Version]
- Allen, V.; van der Tak, F.F.S.; Sánchez-Monge, Á.; Cesaroni, R.; Beltrán, M.T. Chemical segregation in hot cores with disk candidates. An investigation with ALMA. Astron. Astrophys. 2017, 603, A133. [Google Scholar] [CrossRef]
- Bøgelund, E.G.; Barr, A.G.; Taquet, V.; Ligterink, N.F.W.; Persson, M.V.; Hogerheijde, M.R.; van Dishoeck, E.F. Molecular complexity on disc scales uncovered by ALMA. Chemical composition of the high-mass protostar AFGL 4176. Astron. Astrophys. 2019, 628, A2. [Google Scholar] [CrossRef]
- Bacmann, A.; Taquet, V.; Faure, A.; Kahane, C.; Ceccarelli, C. Detection of complex organic molecules in a prestellar core: A new challenge for astrochemical models. Astron. Astrophys. 2012, 541, L12. [Google Scholar] [CrossRef] [Green Version]
- Agúndez, M.; Marcelino, N.; Cernicharo, J.; Roueff, E.; Tafalla, M. A sensitive λ 3 mm line survey of L483. A broad view of the chemical composition of a core around a Class 0 object. Astron. Astrophys. 2019, 625, A147. [Google Scholar] [CrossRef]
- Jørgensen, J.K.; Müller, H.S.P.; Calcutt, H.; Coutens, A.; Drozdovskaya, M.N.; Öberg, K.I.; Persson, M.V.; Taquet, V.; van Dishoeck, E.F.; Wampfler, S.F. The ALMA-PILS survey: Isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293-2422B. Astron. Astrophys. 2018, 620, A170. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Dagdigian, P.J.; Rist, C.; Dawes, R.; Quintas-Sánchez, E.; Lique, F.; Hochlaf, M. Interaction of Chiral Propylene Oxide (CH3CHCH2O) with Helium: Potential Energy Surface and Scattering Calculations. ACS Earth Space Chem. 2019, 3, 964–972. [Google Scholar] [CrossRef]
- Faure, A.; Josselin, E.; Wiesenfeld, L.; Ceccarelli, C. Collisional excitation of complex organic molecules. In IAU Symposium 251; Organic Matter in Space; Kwok, S., Sanford, S., Eds.; CUP: Cambridge, UK, 2008; Volume 251, pp. 137–138. [Google Scholar] [CrossRef] [Green Version]
- Galli, D.; Palla, F. The Dawn of Chemistry. Annu. Rev. Astron. Astrophys. 2013, 51, 163–206. [Google Scholar] [CrossRef] [Green Version]
- Güsten, R.; Wiesemeyer, H.; Neufeld, D.; Menten, K.M.; Graf, U.U.; Jacobs, K.; Klein, B.; Ricken, O.; Risacher, C.; Stutzki, J. Astrophysical detection of the helium hydride ion HeH+. Nature 2019, 568, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, D.A.; Goto, M.; Geballe, T.R.; Güsten, R.; Menten, K.M.; Wiesemeyer, H. Detection of vibrational emissions from the helium hydride ion (HeH+) in the planetary nebula NGC 7027. arXiv 2020, arXiv:2001.11344. [Google Scholar]
- Agúndez, M.; Cernicharo, J.; Decin, L.; Encrenaz, P.; Teyssier, D. Confirmation of Circumstellar Phosphine. Astrophys. J. Lett. 2014, 790, L27. [Google Scholar] [CrossRef]
- Rivilla, V.M.; Drozdovskaya, M.N.; Altwegg, K.; Caselli, P.; Beltrán, M.T.; Fontani, F.; van der Tak, F.F.S.; Cesaroni, R.; Vasyunin, A.; Rubin, M.; et al. ALMA and ROSINA detections of phosphorus-bearing molecules: The interstellar thread between star-forming regions and comets. Mon. Not. R. Astron. Soc. 2020, 492, 1180–1198. [Google Scholar] [CrossRef]
- Sousa-Silva, C.; Seager, S.; Ranjan, S.; Petkowski, J.J.; Zhan, Z.; Hu, R.; Bains, W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology 2020, 20, 235–268. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Silva, C.; Tennyson, J.; Yurchenko, S.N. Communication: Tunnelling splitting in the phosphine molecule. J. Chem. Phys. 2016, 145, 091102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indriolo, N.; Neufeld, D.A.; Gerin, M.; Schilke, P.; Benz, A.O.; Winkel, B.; Menten, K.M.; Chambers, E.T.; Black, J.H.; Bruderer, S.; et al. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate. Astrophys. J. 2015, 800, 40. [Google Scholar] [CrossRef] [Green Version]
- Dubernet, M.L.; Quintas-Sánchez, E. First, quantum study of the rotational excitation of HCN by para-H2O: Convergence of quantum results, influence of the potential energy surface, and approximate rate coefficients of interest for cometary atmospheres. Mol. Astrophys. 2019, 16, 100046. [Google Scholar] [CrossRef]
- Faure, A.; Lique, F.; Loreau, J. The effect of CO-H2O collisions in the rotational excitation of cometary CO. Mon. Not. R. Astron. Soc. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.S.; Wright, D.; Goodson, G.B.; Rieke, G.H.; Aitink-Kroes, G.; Amiaux, J.; Aricha-Yanguas, A.; Azzollini, R.; Banks, K.; Barrado-Navascues, D.; et al. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build. Publ. Astron. Soc. Pac. 2015, 127, 595. [Google Scholar] [CrossRef]
- Brandl, B.R.; Absil, O.; Agócs, T.; Baccichet, N.; Bertram, T.; Bettonvil, F.; van Boekel, R.; Burtscher, L.; van Dishoeck, E.; Feldt, M.; et al. Status of the mid-IR ELT imager and spectrograph (METIS). Proc. SPIE 2018, 10702, 107021U. [Google Scholar] [CrossRef]
- Roelfsema, P.R.; Shibai, H.; Armus, L.; Arrazola, D.; Audard, M.; Audley, M.D.; Bradford, C.M.; Charles, I.; Dieleman, P.; Doi, Y.; et al. SPICA-A Large Cryogenic Infrared Space Telescope: Unveiling the Obscured Universe. Publ. Astron. Soc. Aust. 2018, 35, e030. [Google Scholar] [CrossRef] [Green Version]
- Asselin, P.; Belkhodja, Y.; Jabri, A.; Potapov, A.; Loreau, J.; van der Avoird, A. Rovibrational laser jet-cooled spectroscopy of the NH3–Ar complex in the ν2 umbrella region of NH3: Comparison between new infrared data and an ab initio calculated spectrum. Mol. Phys. 2018, 116, 3642–3655. [Google Scholar] [CrossRef] [Green Version]
- Bosman, A.D.; Bruderer, S.; van Dishoeck, E.F. CO2 infrared emission as a diagnostic of planet-forming regions of disks. Astron. Astrophys. 2017, 601, A36. [Google Scholar] [CrossRef] [Green Version]
- Stoecklin, T.; Denis-Alpizar, O.; Clergerie, A.R.; Halvick, P.; Faure, A.; Scribano, Y. Rigid-Bender Close-Coupling Treatment of the Inelastic Collisions of H2O with para-H2. J. Phys. Chem. A 2019, 123, 5704–5712. [Google Scholar] [CrossRef] [PubMed]
- Pontoppidan, K.M.; Salyk, C.; Blake, G.A.; Meijerink, R.; Carr, J.S.; Najita, J. A Spitzer Survey of Mid-infrared Molecular Emission from Protoplanetary Disks. I. Detection Rates. Astrophys. J. 2010, 720, 887–903. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.T.; Kingston, A.E. Electron excitation of the 1s(2)2s(2)2p(5) (2)P(0)3/2-(2)P(0)1/2 transition and analysis of the 1s(2)2s2p(6) nl resonances for Ne II and Mg IV. J. Phys. B At. Mol. Phys. 1987, 20, 5757–5769. [Google Scholar] [CrossRef]
- Ramsbottom, C.A.; Hudson, C.E.; Norrington, P.H.; Scott, M.P. Electron-impact excitation of Fe II. Collision strengths and effective collision strengths for low-lying fine-structure forbidden transitions. Astron. Astrophys. 2007, 475, 765–769. [Google Scholar] [CrossRef]
- Pelan, J.; Berrington, K.A. Atomic data from the IRON Project. XXI. Electron excitation of fine-structure transitions involving the 3d4s D ground state and the 3d4s 5F metastable state of Fe i. Astron. Astrophys. Suppl. Ser. 1997, 122, 177–180. [Google Scholar] [CrossRef]
- Western, C.M. PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Belloche, A.; Garrod, R.T.; Müller, H.S.P.; Menten, K.M.; Medvedev, I.; Thomas, J.; Kisiel, Z. Re-exploring Molecular Complexity with ALMA (ReMoCA): Interstellar detection of urea. Astron. Astrophys. 2019, 628, A10. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Halvick, P.; Stoecklin, T.; Honvault, P.; Epée Epée, M.D.; Mezei, J.Z.; Motapon, O.; Schneider, I.F.; Tennyson, J.; Roncero, O.; et al. State-to-state chemistry and rotational excitation of CH+ in photon-dominated regions. Mon. Not. R. Astron. Soc. 2017, 469, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Möller, T.; Endres, C.; Schilke, P. eXtended CASA Line Analysis Software Suite (XCLASS). Astron. Astrophys. 2017, 598, A7. [Google Scholar] [CrossRef] [Green Version]
1. | |
2. | Twitter: @lamda_database |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | |
9. | |
10. | For an up-to-date overview, see https://cdms.astro.uni-koeln.de/classic/molecules |
11. | |
12. |
Class | Accuracy | Type of Calculation |
---|---|---|
A | ∼30% | Quantum (close coupling or coupled states methods) |
B | factor of ∼2 | IOS, QCT/statistical calculations; |
Born/Coulomb-Born/recoupling approximation | ||
C | factor of ∼3–4 | direct scaling He → H, O → S |
D | factor of ∼10 | indirect scalings for similar systems; |
reduced dimension approaches for reactive systems |
Species | Collider | Temperature Range (K) | Reference | Quality Level |
---|---|---|---|---|
C | H | 10–200 | [16] | B * |
C | e | 10–20,000 | [17] | B |
C | H | 100–2000 | [18] | B |
C | He | 10–150 | [19] | B |
C | o/p H | 10–1200 | [20] | B |
C | H | 20–2000 | [21] | A |
C | e | 10–20,000 | [22] | A |
C | H | 10–500 | [23,24] | A |
N | e | 500–100,000 | [25] | A |
O | H | 10–8000 | [26] | A |
O | e | 50–3000 | [27] | A |
O | o/p H | 10–8000 | [26] | A |
O | He | 10–8000 | [26] | A |
O | H | 10–8000 | [28] | A |
Molecule | Collider | Temperature Range (K) | Reference | Quality Level |
---|---|---|---|---|
CF | H | 10–300 | [42] | C |
CH | H | 10–300 | [43] | B |
CH | H | 10–300 | [43] | B |
CN | H | 5–300 | [44] | C |
CN | e | 10–1000 | [45] | B * |
CN | H | 5–100 | [46] | A |
CO | o/p H | 2–3000 | [47] | A |
CS | H | 10–300 | [48] | C * |
HCl | H | 10–300 | [49] | A |
HF | He | 10–300 | [50] | A |
HF | e | 10–1000 | [51] | B |
HF | H | 10–150 | [52] | A |
NO | H | 10–300 | [53] | C |
OH | H | 15–300 | [54] | B |
OH | e | 10–1000 | [55,56] | B * |
O | H | 5–350 | [37] | C * |
SiO | H | 5–300 | [57] | A |
SiS | H | 10–2000 | [58] | D * |
SO | H | 60–300 | [59] | C |
Molecule | Collider | Temperature Range (K) | Reference | Quality Level |
---|---|---|---|---|
CH | H | 5–100 | [77] | C |
CH | e | 10–1000 | [78] | B |
CH | o/p H | 10–300 | [79] | A |
CH | H | 15–300 | [80] | C |
HCN | H | 5–500 | [81] | C |
HCN | e | 5–800 | [82] | B |
HCN (hfs) | H | 5–30 | [83] | A |
HCO | H | 10–400 | [84] | B, C * |
HCS | H | 10–2000 | [84] | C |
HDO | H | 5–300 | [85] | A |
HO | H | 5–1500 | [86] | A |
HO (rovib) | H, e | 200–5000 | [87] | D |
HS | H | 5–1500 | [86] | C |
HNC | He | 5–500 | [81] | C * |
NH | H | 5–50 | [88] | C |
OCS | H | 10–100 e | [89] | D |
SiC | H | 25–125 | [90] | B |
SO | H | 5–50 | [91] | A, B |
! Molecule |
HCO+ |
! Molecular weight |
29.0 |
! Number of energy levels |
21 |
! Level + Energies (cm) + Weight + QuantumNumbers (J) |
1 0.000000000 1.0 0 |
2 2.975008479 3.0 1 |
... |
21 624.269300464 41.0 20 |
! Number of radiative transitions |
20 |
! Trans + Up + Low + EinsteinA (s) + Frequency (GHz) |
1 2 1 4.251 89.18839570 |
2 3 2 4.081 178.37481404 |
... |
20 21 20 4.955 1781.13802857 |
! Number of collision partners |
1 |
! Collisions between |
1 H2-HCO+ from Flower (1999) |
! Number of collisional transitions |
210 |
! Number of collisional temperatures |
12 |
! Collisional temperatures |
10.0 20.0 30.0 50.0 70.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 |
! Transition + Up + Low + CollisionRates (cm s) |
1 2 1 2.6 2.3 2.1 2.0 1.9 1.8 2.0 2.2 2.3 2.5 2.7 2.8 |
2 3 1 1.4 1.2 1.1 1.0 9.2 8.8 8.4 8.2 8.1 8.3 8.1 8.5 |
... |
210 21 20 3.7 3.6 3.6 3.5 3.5 3.5 3.8 4.0 4.4 4.7 5.0 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Tak, F.F.S.; Lique, F.; Faure, A.; Black, J.H.; van Dishoeck, E.F. The Leiden Atomic and Molecular Database (LAMDA): Current Status, Recent Updates, and Future Plans. Atoms 2020, 8, 15. https://doi.org/10.3390/atoms8020015
van der Tak FFS, Lique F, Faure A, Black JH, van Dishoeck EF. The Leiden Atomic and Molecular Database (LAMDA): Current Status, Recent Updates, and Future Plans. Atoms. 2020; 8(2):15. https://doi.org/10.3390/atoms8020015
Chicago/Turabian Stylevan der Tak, Floris F. S., François Lique, Alexandre Faure, John H. Black, and Ewine F. van Dishoeck. 2020. "The Leiden Atomic and Molecular Database (LAMDA): Current Status, Recent Updates, and Future Plans" Atoms 8, no. 2: 15. https://doi.org/10.3390/atoms8020015
APA Stylevan der Tak, F. F. S., Lique, F., Faure, A., Black, J. H., & van Dishoeck, E. F. (2020). The Leiden Atomic and Molecular Database (LAMDA): Current Status, Recent Updates, and Future Plans. Atoms, 8(2), 15. https://doi.org/10.3390/atoms8020015