Impact Features Induced by Single Fast Ions of Different Charge-State on Muscovite Mica
Abstract
:1. Introduction
2. Results
2.1. Electronic Stopping Power at the Surface
2.2. Phase Imaging and the Nature of the Impact Features
2.3. Impact Features Induced by Ions of Different Initial Charge States q
3. Discussion
Scaling of Surface Tracks with the Initial Charge State
4. Materials and Methods
4.1. Targets and Bombardment Conditions
4.2. SFM Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a-C | amorphous carbon |
RMS | root mean square |
SAXS | small-angle X-ray scattering |
SFM | scanning force microscopy |
TEM | transmission electron microscopy |
References
- Fleischer, R.L.; Price, P.B.; Walker, R.M. Nuclear Tracks in Solids—Principles and Applications; University of California Press: Berkeley, CA, USA, 1975; p. 626. [Google Scholar]
- Spohr, R. Ion Tracks and Microtechnology: Principles and Applications; Vieweg: Braunschweig, Germany, 1990; p. 282. [Google Scholar]
- Lang, M.; Glasmacher, U.A.; Moine, B.; Neumann, R.; Wagner, G.A. Etch-pit morphology of tracks caused by swift heavy ions in natural dark mica. Nucl. Instr. Methods B 2004, 218, 466–471. [Google Scholar] [CrossRef]
- Donnelly, S.E.; Birtcher, R.C. Heavy ion cratering of gold. Phys. Rev. B 1997, 56, 13599–13602. [Google Scholar] [CrossRef]
- Eriksson, J.; Rottler, J.; Reimann, C.T. Fast-ion-induced surface tracks in bioorganic films. Int. J. Mass Spectrom. Ion Proc. 1998, 175, 293–308. [Google Scholar] [CrossRef]
- Neumann, R. Scanning probe microscopy of ion-irradiated materials. Nucl. Instr. Methods B 1999, 151, 42–55. [Google Scholar] [CrossRef]
- Papaléo, R.M. Surface tracks and cratering in polymers. In Fundamentals of Ion-Irradiated Polymers; Fink, D., Ed.; Springer: Heidelberg, Germany, 2004; pp. 207–250. [Google Scholar]
- Akcöltekin, E.; Peters, T.; Meyer, R.; Duvenbeck, A.; Klusmann, M.; Monnet, I.; Lebius, H.; Schleberger, M. Creation of multiple nanodots by single ions. Nat. Nanotechnol. 2007, 2, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Watt, F.; Bettiol, A.A.; van Kan, J.A.; Teo, E.J.; Breese, M.B.H. Ion beam lithography and nanofabrication: A review. Int. J. Nanosci. 2005, 4, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Bruchhaus, L.; Marazov, P.; Bischoff, L.; Gierak, J.; Wieck, A.D.; Hövel, H. Comparison of technologies for nano device prototyping with a special focus on ion beams: A review. Appl. Phys. Rev. 2017, 4, 011302. [Google Scholar] [CrossRef]
- Samela, J.; Nordlund, K.; Popok, V.N.; Campbell, E.B. Origin of complex impact craters on native oxide coated silicon surfaces. Phys. Rev. B 2008, 77, 075309. [Google Scholar] [CrossRef] [Green Version]
- El-Said, A.S.; Heller, R.; Meissl, W.; Ritter, R.; Facsko, S.; Lemell, C.; Solleder, B.; Gebeshuber, I.C.; Betz, G.; Toulemonde, M.; et al. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions. Phys. Rev. Lett. 2008, 100, 237601. [Google Scholar] [CrossRef] [Green Version]
- Thibaudau, F.; Cousty, J.; Balanzat, E.; Bouffard, S. Atomic-force-microscopy observations of tracks induced by swift Kr ions in mica. Phys. Rev. Lett. 1991, 67, 1582–1585. [Google Scholar] [CrossRef]
- Kopniczky, J.; Reimann, C.T.; Hallén, A.; Sundqvist, B.U.R.; Tengvall, P.; Erlandsson, R. Scanning-force-microscopy study of MeV-atomic-ion-induced surface tracks in organic crystals. Phys. Rev. B 1994, 49, 625–628. [Google Scholar] [CrossRef]
- Papaléo, R.M.; Silva, M.R.; Leal, R.; Grande, P.L.; Roth, M.; Schattat, B.; Schiwietz, G. Direct evidence for projectile charge-state dependet crater formation due to fast ions. Phys. Rev. Lett. 2008, 101, 167601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birtcher, R.C.; Donnelly, S.E.; Schlutig, S. Nanoparticle ejection from Au induced by single Xe ion impacts. Phys. Rev. Lett. 2000, 85, 4968–4971. [Google Scholar] [CrossRef]
- Farenzena, L.S.; Livi, R.P.; Araújo, M.A.; Bermudez, G.G.; Papaléo, R.M. Cratering and plastic deformation in polystyrene induced by MeV heavy ions: Dependence on the molecular weight. Phys. Rev. B 2001, 63, 104108. [Google Scholar] [CrossRef] [Green Version]
- Alencar, I.; Hatori, M.; Marmitt, G.G.; Trombini, H.; Grande, P.L.; Dias, J.F.; Papaléo, R.M.; Mücklich, A.; Assmann, W.; Toulemonde, M.; et al. Nanoparticle emission by electronic sputtering of CaF2 single crystals. Appl. Surf. Sci. 2021, 537, 147821. [Google Scholar] [CrossRef]
- Toulemonde, M.; Benyagoub, A.; Trautmann, C.; Khalfaoui, N.; Boccanfuso, M.; Dufour, C.; Gourbilleau, F.; Grob, J.J.; Stoquert, J.P.; Costantini, J.M.; et al. Dense and nanometric excitations induced by swift heavy ions in an ionic CaF2 crystal: Evidence for two thresholds of damage creation. Phys. Rev. B 2012, 85, 054112. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.E.; Sundqvist, B.U.R.; Hedin, A.; Fenyö, D. Sputtering by fast ions based on a sum of impulses. Phys. Rev. B 1989, 40, 49–53. [Google Scholar] [CrossRef]
- Klaumünzer, S. Thermal-spike models for ion track physics: A critical examination. Mat. Fys. Meddelelser 2006, 52, 293–328. [Google Scholar]
- Papaléo, R.M.; Leal, R.; Carreira, W.H.; Barbosa, L.G.; Bello, I.; Bulla, A. Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition. Phys. Rev. B 2006, 74, 094203. [Google Scholar] [CrossRef] [Green Version]
- Grande, P.L.; Schiwietz, G. Impact-parameter dependence of the electronic energy loss of fast ions. Phys. Rev. A 1998, 58, 3796–3801. [Google Scholar] [CrossRef] [Green Version]
- Jonckheere, R. On the densities of etchable fission tracks in a mineral and co-irradiated external detector with reference to fission-track dating of minerals. Chem. Geol. 2003, 200, 41–58. [Google Scholar] [CrossRef]
- Hagen, T.; Grafström, S.; Ackermann, J.; Neumann, R.; Trautmann, C.; Vetter, J.; Angert, N. Friction force microscopy of heavy-ion irradiated mica. J. Vacuum Sci. Technol. B 1994, 12, 1555–1558. [Google Scholar] [CrossRef]
- Barlo Daya, D.D.N.; Hallén, A.; Hakansson, P.; Sundqvist, B.U.R.; Reimann, C.T. Scanning force microscopy study of surface tracks induced in mica by 78.2-MeV 127I ions. Nucl. Instr. Methods B 1995, 103, 454–465. [Google Scholar] [CrossRef]
- Barlo Daya, D.D.N.; Hallén, A.; Eriksson, J.; Kopniczky, J.; Papaléo, R.M.; Reimann, C.T.; Hakansson, P.; Sundqvist, B.U.R.; Brunelle, A.; Della-Negra, S.; et al. Radiation damage features on mica and L-valine probed by scanning force microscopy. Nucl. Instr. Methods B 1995, 106, 38–42. [Google Scholar] [CrossRef]
- Ackermann, J.; Angert, N.; Neumann, R.; Trautmann, C.; Dischner, M.; Hagen, T.; Sedlacek, M. Ion track diameters in mica studied with scanning force microscopy. Nucl. Instr. Methods B 1996, 107, 181–184. [Google Scholar] [CrossRef]
- Barlo Daya, D.D.N.; Reimann, C.T.; Hallén, A.; Sundqvist, B.U.R.; Hakansson, P. Latent (sub-surface) tracks in mica studied by tapping mode scanning force microscopy. Nucl. Instr. Methods B 1996, 111, 87–90. [Google Scholar] [CrossRef]
- Neumann, R.; Ackermann, J.; Angert, N.; Trautmann, C.; Sedlacek, M. Ion tracks in mica studied with scanning force microscopy using force modulation. Nucl. Instr. Methods B 1996, 116, 492–495. [Google Scholar] [CrossRef]
- Barlo Daya, D.D.N.; Reimann, C.T.; Hakansson, P.; Sundqvist, B.U.R.; Brunelle, A.; Della-Negra, S.; Le Beyec, Y. Crater formation due to grazing incidence C60 cluster ion impacts on mica: A tapping-mode scanning force microscopy study. Nucl. Instr. Methods B 1997, 124, 484–489. [Google Scholar] [CrossRef]
- Ackermann, J.; Müller, A.; Neumann, R.; Wang, Y. Scanning force microscopy on heavy-ion tracks in muscovite mica: Track diameter versus energy loss and loading force. Appl. Phys. A 1998, 66, 1151–1154. [Google Scholar] [CrossRef] [Green Version]
- Vorobyova, I.; Reimann, C.; Toulemonde, M. Comparison of the structure and sizes of tracks induced by high-energy monatomic and cluster ions incident on the surface of mica. Nucl. Instr. Methods B 2000, 166–167, 959–963. [Google Scholar] [CrossRef]
- Bouffard, S.; Leroy, C.; Della-Negra, S.; Brunelle, A.; Costantini, J.M. Damage production yield by electron excitation in mica for ion and cluster irradiations. Philos. Mag. A 2001, 81, 2841–2854. [Google Scholar] [CrossRef]
- Gruber, E.; Bergen, L.; Salou, P.; Lattouf, E.; Grygiel, C.; Wang, Y.; Benyagoub, A.; Levavasseur, D.; Rangama, J.; Lebius, H.; et al. High resolution AFM studies of irradiated mica: Following the traces of swift heavy ions under grazing incidence. J. Phys. Condens. Matter 2018, 30, 285001. [Google Scholar] [CrossRef]
- Vetter, J.; Scholz, R.; Dobrev, D.; Nistor, L. HREM investigation of latent tracks in GeS and mica induced by high energy ions. Nucl. Instr. Methods B 1998, 141, 747–752. [Google Scholar] [CrossRef]
- Chailley, V.; Dooryhee, E.; Bouffard, S.; Balanzat, E.; Levalois, M. Observations by X-ray diffraction of structural changes in mica irradiated by swift heavy ions. Nucl. Instr. Methods B 1994, 91, 162–167. [Google Scholar] [CrossRef]
- Chailley, V.; Dooryhee, E.; Levalois, M. Amorphization of mica through the formation of GeV heavy ion tracks. Nucl. Instr. Methods B 1996, 107, 199–203. [Google Scholar] [CrossRef]
- Schneider, D.; Briere, M.A.; Clark, M.W.; McDonald, J.; Biersack, J.; Siekhaus, W. Atomic displacement due to the electrostatic potential energy of very highly charged ions at solid surfaces. Surf. Sci. 1993, 294, 403–408. [Google Scholar] [CrossRef]
- Schneider, D.; Briere, M.A.; McDonald, J.; Biersack, J. Ion/surface interaction studies with 1–3 keV/amu ions up to Th80+. Radiat. Eff. Defects Solids 1993, 127, 113–136. [Google Scholar] [CrossRef]
- Parks, D.C.; Bastasz, R.; Schmieder, R.W.; Stöckli, M. Nanometer-size surface features produced by single, low energy, highly charged ions. J. Vacuum Sci. Technol. B 1995, 13, 941–948. [Google Scholar] [CrossRef]
- Ruehlicke, C.; Briere, M.; Schneider, D. AFM studies of a new type of radiation defect on mica surfaces caused by highly charged ion impact. Nucl. Instr. Methods B 1995, 99, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.C.; Stöckli, M.P.; Bell, E.W.; Ratliff, L.P.; Schmieder, R.W.; Serpa, F.G.; Gillaspy, J.D. Non-kinetic damage on insulating materials by highly charged ion bombardment. Nucl. Instr. Methods B 1998, 134, 46–52. [Google Scholar] [CrossRef]
- Ritter, R.; Kowarik, G.; Meissl, W.; El-Said, A.S.; Maunoury, L.; Lebius, H.; Dufour, C.; Toulemonde, M.; Aumayr, F. Nanostructure formation due to impact of highly charged ions on mica. Vacuum 2010, 84, 1062–1065. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Sun, J.; Wang, Z.; Liu, J.; Li, J.; Xiao, G. Creation of nanodots on mica surfaces induced by highly charged xenon ions. Nucl. Instr. Methods B 2012, 286, 299–302. [Google Scholar] [CrossRef]
- Toulemonde, M. Irradiation by swift heavy ions: Influence of the non-equilibrium projectile charge state for near surface experiments. Nucl. Instr. Methods B 2006, 250, 263–268. [Google Scholar] [CrossRef]
- Assmann, W.; Ban-d’Etat, B.; Bender, M.; Boduch, P.; Grande, P.L.; Lebius, H.; Lelièvre, D.; Marmitt, G.G.; Rothard, H.; Seidl, T.; et al. Charge-state related effects in sputtering of LiF by swift heavy ions. Nucl. Instr. Methods B 2017, 392, 94–101. [Google Scholar] [CrossRef]
- Schiwietz, G.; Grande, P.L. Improved charge-state formulas. Nucl. Instr. Methods B 2001, 175–177, 125–131. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM – The stopping and range of ions in matter (2010). Nucl. Instr. Methods B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Grande, P.L.; Nagamine, L.C.C.M.; Morais, J.; Alves, M.C.M.; Schiwietz, G.; Roth, M.; Schattat, B.; Baggio-Saitovitch, E. High-energy ion beam irradiation of Co/NiFe/Co/Cu multilayers: Effects on the structural, transport and magnetic properties. Thin Solid Films 2008, 516, 2087–2093. [Google Scholar] [CrossRef] [Green Version]
- Scott, W.W.; Bhushan, B. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. Ultramicroscopy 2003, 97, 151–169. [Google Scholar] [CrossRef]
- Szenes, G. General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys. Rev. B 1995, 51, 8026–8029. [Google Scholar] [CrossRef]
- Sigmund, P.; Osmani, O.; Schinner, A. Anatomy of charge-exchange straggling. Nucl. Instr. Methods B 2014, 338, 101–107. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alencar, I.; Silva, M.R.; Leal, R.; Grande, P.L.; Papaléo, R.M. Impact Features Induced by Single Fast Ions of Different Charge-State on Muscovite Mica. Atoms 2021, 9, 17. https://doi.org/10.3390/atoms9010017
Alencar I, Silva MR, Leal R, Grande PL, Papaléo RM. Impact Features Induced by Single Fast Ions of Different Charge-State on Muscovite Mica. Atoms. 2021; 9(1):17. https://doi.org/10.3390/atoms9010017
Chicago/Turabian StyleAlencar, Igor, Marcos R. Silva, Rafael Leal, Pedro L. Grande, and Ricardo M. Papaléo. 2021. "Impact Features Induced by Single Fast Ions of Different Charge-State on Muscovite Mica" Atoms 9, no. 1: 17. https://doi.org/10.3390/atoms9010017
APA StyleAlencar, I., Silva, M. R., Leal, R., Grande, P. L., & Papaléo, R. M. (2021). Impact Features Induced by Single Fast Ions of Different Charge-State on Muscovite Mica. Atoms, 9(1), 17. https://doi.org/10.3390/atoms9010017