Revealing the Target Electronic Structure with Under-Threshold RABBITT
Abstract
:1. Introduction
2. Theoretical Model
2.1. Lowest Order Perturbation Theory
2.2. Non-Perturbative Treatment
2.3. Target Electronic Structure
3. Numerical Results
3.1. Photolelectron Spectra
3.2. RABBITT Phase and Magnitude Parameters
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, H. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 2002, 74, s17–s21. [Google Scholar] [CrossRef]
- Toma, E.S.; Muller, H.G. Calculation of matrix elements for mixed extreme-ultraviolet–infrared two-photon above-threshold ionization of argon. J. Phys. B 2002, 35, 3435. [Google Scholar] [CrossRef]
- Pazourek, R.; Nagele, S.; Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 2015, 87, 765–802. [Google Scholar] [CrossRef]
- Huppert, M.; Jordan, I.; Baykusheva, D.; von Conta, A.; Wörner, H.J. Attosecond Delays in Molecular Photoionization. Phys. Rev. Lett. 2016, 117, 093001. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.; Cattaneo, L.; Patchkovskii, S.; Zimmermann, T.; Cirelli, C.; Lucchini, M.; Kheifets, A.; Landsman, A.S.; Keller, U. Orientation-dependent Stereo Wigner Time delay in a small molecule. Science 2018, 360, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Jordan, I.; Huppert, M.; Rattenbacher, D.; Peper, M.; Jelovina, D.; Perry, C.; von Conta, A.; Schild, A.; Wörner, H.J. Attosecond spectroscopy of liquid water. Science 2020, 369, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, M.; Castiglioni, L.; Kasmi, L.; Kliuiev, P.; Ludwig, A.; Greif, M.; Osterwalder, J.; Hengsberger, M.; Gallmann, L.; Keller, U. Light-Matter Interaction at Surfaces in the Spatiotemporal Limit of Macroscopic Models. Phys. Rev. Lett. 2015, 115, 137401. [Google Scholar] [CrossRef] [PubMed]
- Locher, R.; Castiglioni, L.; Lucchini, M.; Greif, M.; Gallmann, L.; Osterwalder, J.; Hengsberger, M.; Keller, U. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica 2015, 2, 405–410. [Google Scholar] [CrossRef]
- Kheifets, A.S.; Bray, A.W. RABBITT phase transition across the ionization threshold. Phys. Rev. A 2021, 103, L011101. [Google Scholar] [CrossRef]
- Jiménez-Galán, A.; Martín, F.; Argenti, L. Two-photon finite-pulse model for resonant transitions in attosecond experiments. Phys. Rev. A 2016, 93, 023429. [Google Scholar] [CrossRef]
- Ishikawa, K.L.; Ueda, K. Competition of Resonant and Nonresonant Paths in Resonance-Enhanced Two-Photon Single Ionization of He by an Ultrashort Extreme-Ultraviolet Pulse. Phys. Rev. Lett. 2012, 108, 033003. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, M.; Fordell, T.; Klünder, K.; Dahlström, J.M.; Miranda, M.; Buth, C.; Schafer, K.J.; Mauritsson, J.; L’Huillier, A.; Gisselbrecht, M. Phase Measurement of Resonant Two-Photon Ionization in Helium. Phys. Rev. Lett. 2010, 104, 103003. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, D.M.; Hockett, P.; Vrakking, M.J.J.; Niikura, H. Coherent imaging of an attosecond electron wave packet. Science 2017, 356, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Moioli, M.; Hamilton, K.R.; Ahmadi, H.; Ertel, D.; Schmoll, M.; Popova, M.M.; Gryzlova, E.V.; Grum-Grzhimailo, A.N.; Kiselev, M.D.; Atri-Schuller, D.; et al. Attosecond time delays near the photoionisation threshold of neon. Photonic Electron. Atom. Collisions 2021, 32, J31. [Google Scholar]
- Amusia, M.Y. Atomic Photoeffect; Plenum Press: New York, NY, USA, 1990. [Google Scholar]
- Morales, F.; Bredtmann, T.; Patchkovskii, S. iSURF: A family of infinite-time surface flux methods. J. Phys. B 2016, 49, 245001. [Google Scholar] [CrossRef]
- Wendin, G.; Starace, A.F. Perturbation theory in a strong-interaction regime with application to 4d-subshell spectra of Ba and La. J. Phys. B 1978, 11, 4119. [Google Scholar] [CrossRef]
- Heuser, S.; Jiménez Galán, A.; Cirelli, C.; Marante, C.; Sabbar, M.; Boge, R.; Lucchini, M.; Gallmann, L.; Ivanov, I.; Kheifets, A.S.; et al. Angular dependence of photoemission time delay in helium. Phys. Rev. A 2016, 94, 063409. [Google Scholar] [CrossRef]
- Kheifets, A.S. Strongly resonant RABBITT on lithium. Phys. Rev. A 2021, 104, L021103. [Google Scholar] [CrossRef]
- Ivanov, I.A.; Kheifets, A.S. Angle-dependent time delay in two-color XUV+IR photoemission of He and Ne. Phys. Rev. A 2017, 96, 013408. [Google Scholar] [CrossRef]
- Bray, A.W.; Naseem, F.; Kheifets, A.S. Simulation of angular-resolved RABBITT measurements in noble-gas atoms. Phys. Rev. A 2018, 97, 063404. [Google Scholar] [CrossRef]
- The 500 Most Powerful Commercially Available Computer Systems. Available online: https://www.top500.org/lists/top500/2021/06/ (accessed on 28 June 2021).
- Amusia, M.I.; Chernysheva, L.V. Computation of Atomic Processes: A Handbook for the ATOM Programs; Institute of Physics Publishing Ltd.: Bristol, UK; Philadelphia, PA, USA, 1997. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.2); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. Available online: http://physics.nist.gov/asd (accessed on 30 June 2015).
nl | Binding Energy Enl, au | fnl, au | ||
---|---|---|---|---|
Expt. | Theory | |||
NIST | TDSE | ATOM | ||
2p | 0.792 | 0.788 | 0.850 | |
3s | 0.181 | 0.171 | 0.175 | 0.1505 |
4s | 0.066 | 0.067 | 0.068 | 0.0265 |
3d | 0.056 | 0.055 | 0.056 | 0.0203 |
4d | 0.031 | 0.031 | 0.031 | 0.0109 |
5d | 0.020 | 0.020 | 0.020 | 0.0061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheifets, A. Revealing the Target Electronic Structure with Under-Threshold RABBITT. Atoms 2021, 9, 66. https://doi.org/10.3390/atoms9030066
Kheifets A. Revealing the Target Electronic Structure with Under-Threshold RABBITT. Atoms. 2021; 9(3):66. https://doi.org/10.3390/atoms9030066
Chicago/Turabian StyleKheifets, Anatoli. 2021. "Revealing the Target Electronic Structure with Under-Threshold RABBITT" Atoms 9, no. 3: 66. https://doi.org/10.3390/atoms9030066
APA StyleKheifets, A. (2021). Revealing the Target Electronic Structure with Under-Threshold RABBITT. Atoms, 9(3), 66. https://doi.org/10.3390/atoms9030066