Evaluation of Recommended Cross Sections for the Simulation of Electron Tracks in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Recommended Cross Sections
2.2. Input Data for Our Simulation
2.3. Experiment vs. Simulation
3. Materials and Methods
3.1. Magnetically Confined Electron Beam Experiment
3.2. Simulation Procedure
3.3. Theoretical Calculation of Elastic and Rotational Cross Sections
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The suite can be downloaded from: https://doi.org/10.5281/zenodo.2630454 and https://doi.org/10.5281/zenodo.2630474 (accessed on 1 November 2021). |
References
- Verkhovtsev, A.; Traore, A.; Muñoz, A.; Blanco, F.; García, G. Modeling secondary particle tracks generated by intermediate- and low-energy protons in water with the Low-Energy Particle Track Simulation code. Radiat. Phys. Chem. 2017, 130, 371–378. [Google Scholar] [CrossRef]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. THE GEANT4-DNA PROJECT. Int. J. Model. Simul. Sci. Comput. 2010, 01, 157–178. [Google Scholar] [CrossRef]
- Bernal, M.A.; Bordage, M.C.; Brown, J.M.C.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.A.; Francis, Z.; Guatelli, S.; Ivanchenko, V.N.; et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 2015, 31, 861–874. [Google Scholar] [CrossRef]
- Yousfi, M.; Benabdessadok, M.D. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia. J. Appl. Phys. 1998, 80, 6619. [Google Scholar] [CrossRef]
- Karwasz, G.P.; Brusa, R.S.; Zecca, A. One century of experiments on electron-atom and molecule scattering: A critical review of integral cross-sections. La Riv. del Nuovo Cim. 2001, 24, 1–101. [Google Scholar] [CrossRef]
- Robson, R.E.; White, R.D.; Ness, K.F. Transport coefficients for electrons in water vapor: Definition, measurement, and calculation. J. Chem. Phys. 2011, 134, 064319. [Google Scholar] [CrossRef]
- Ness, K.F.; Robson, R.E.; Brunger, M.J.; White, R.D. Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution. J. Chem. Phys. 2012, 136, 024318. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Tabata, T.; Tawara, H. Analytic cross sections for electron collisions with CO, CO2, and H2O relevant to edge plasma impurities. At. Data Nucl. Data Tables 2001, 79, 143–184. [Google Scholar] [CrossRef]
- Blanco, F.; Muñoz, A.; Almeida, D.; Ferreira da Silva, F.; Limão-Vieira, P.; Fuss, M.C.; Sanz, A.G.; García, G. Modelling low energy electron and positron tracks in biologically relevant media. Eur. Phys. J. D 2013, 67, 199. [Google Scholar] [CrossRef]
- Itikawa, Y.; Mason, N. Cross Sections for Electron Collisions with Water Molecules. J. Phys. Chem. Ref. Data 2005, 34, 1–22. [Google Scholar] [CrossRef]
- Song, M.-Y.; Yoon, J.-S.; Cho, H.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. “Recommended” cross sections for electron collisions with molecules. Eur. Phys. J. D 2020, 74, 60. [Google Scholar] [CrossRef]
- De Urquijo, J.; Basurto, E.; Juárez, A.M.; Ness, K.F.; Robson, R.E.; Brunger, M.J.; White, R.D. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets. J. Chem. Phys. 2014, 141, 014308. [Google Scholar] [CrossRef]
- Fuss, M.C.; Ellis-Gibbings, L.; Jones, D.B.; Brunger, M.J.; Blanco, F.; Muñoz, A.; Limão-Vieira, P.; García, G. The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study. J. Appl. Phys. 2015, 117, 214701. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, A.; Blanco, F.; Garcia, G.; Thorn, P.A.; Brunger, M.J.; Sullivan, J.P.; Buckman, S.J. Single electron tracks in water vapour for energies below 100 eV. Int. J. Mass Spectrom. 2008, 277, 175–179. [Google Scholar] [CrossRef]
- Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M.J.; Buckman, S.J.; Cho, H.; Blanco, F.; et al. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O. Eur. Phys. J. D 2012, 66, 36. [Google Scholar] [CrossRef]
- Ruíz-Vargas, G.; Yousfi, M.; Urquijo, J. de Electron transport coefficients in the mixtures of H2O with N2, O2, CO2 and dry air for the optimization of non-thermal atmospheric pressure plasmas. J. Phys. D. Appl. Phys. 2010, 43, 455201. [Google Scholar] [CrossRef]
- White, R.D.; Cocks, D.; Boyle, G.; Casey, M.; Garland, N.; Konovalov, D.; Philippa, B.; Stokes, P.; De Urquijo, J.; González-Magaña, O.; et al. Electron transport in biomolecular gaseous and liquid systems: Theory, experiment and self-consistent cross-sections. Plasma Sources Sci. Technol. 2018, 053001. [Google Scholar] [CrossRef]
- Muñoz, A.; Oller, J.C.; Blanco, F.; Gorfinkiel, J.D.; Limão-Vieira, P.; García, G. Electron-scattering cross sections and stopping powers in H2O. Phys. Rev. A 2007, 76, 052707. [Google Scholar] [CrossRef] [Green Version]
- Lozano, A.I.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Jones, D.B.; Brunger, M.J.; García, G. Low energy electron transport in furfural. Eur. Phys. J. D 2017, 71, 226. [Google Scholar] [CrossRef]
- Lozano, A.I.; Oller, J.C.; Jones, D.B.; da Costa, R.F.; Varella, M.T.d.N.; Bettega, M.H.F.; Ferreira da Silva, F.; Limão-Vieira, P.; Lima, M.A.P.; White, R.D.; et al. Total electron scattering cross sections from para -benzoquinone in the energy range 1–200 eV. Phys. Chem. Chem. Phys. 2018, 20, 22368–22378. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Traoré-Dubuis, A.; Álvarez, L.; Lozano, A.I.; Ren, X.; Dorn, A.; Limão-Vieira, P.; Blanco, F.; Oller, J.C.; Muñoz, A.; et al. A Complete Cross Section Data Set for Electron Scattering by Pyridine: Modelling Electron Transport in the Energy Range 0–100 eV. Int. J. Mol. Sci. 2020, 21, 6947. [Google Scholar] [CrossRef]
- Song, M.-Y.; Cho, H.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J.; Faure, A.; Mason, N.J.; Itikawa, Y. Cross Sections for Electron Collisions with H2O. J. Phys. Chem. Ref. Data 2021, 50, 023103. [Google Scholar] [CrossRef]
- Lozano, A.I.; Oller, J.C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G. Magnetically confined electron beam system for high resolution electron transmission-beam experiments. Rev. Sci. Instrum. 2018, 89, 063105. [Google Scholar] [CrossRef] [Green Version]
- Incerti, S.; Ivanchenko, A.; Karamitros, M.; Mantero, A.; Moretto, P.; Tran, H.N.; Mascialino, B.; Champion, C.; Ivanchenko, V.N.; Bernal, M.A.; et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med. Phys. 2010, 37, 4692–4708. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys. 2018, 45, e722–e739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incerti, S.; Douglass, M.; Penfold, S.; Guatelli, S.; Bezak, E. Review of Geant4-DNA applications for micro and nanoscale simulations. Phys. Med. 2016, 32, 1187–1200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Faure, A.; Tennyson, J. Electron and positron collisions with polar molecules: Studies with the benchmark water molecule. Phys. Scr. 2009, 80, 015301. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Gorfinkiel, J.D.; Tennyson, J. Low-energy electron collisions with water: Elastic and rotationally inelastic scattering. J. Phys. B At. Mol. Opt. Phys. 2004, 37, 801. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Gorfinkiel, J.D.; Tennyson, J. Electron-impact rotational excitation of water. Mon. Not. R. Astron. Soc. 2004, 347, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Szmytkowski, C.; Możejko, P. Electron-scattering total cross sections for triatomic molecules: NO2 and H2O. Opt. Appl. 2006, 36, 543–550. [Google Scholar]
- Kadokura, R.; Loreti, A.; Kövér, Á.; Faure, A.; Tennyson, J.; Laricchia, G. Angle-Resolved Electron Scattering from H2O near 0°. Phys. Rev. Lett. 2019, 123. [Google Scholar] [CrossRef]
- Matsui, M.; Hoshino, M.; Kato, H.; da Silva, F.F.; Limão-Vieira, P.; Tanaka, H. Measuring electron-impact cross sections of water: Elastic scattering and electronic excitation of the ã3B1 and Ã1B1 states. Eur. Phys. J. D 2016, 70, 77. [Google Scholar] [CrossRef]
- Khakoo, M.A.; Winstead, C.; McKoy, V. Vibrational excitation of water by electron impact. Phys. Rev. A 2009, 79, 052711. [Google Scholar] [CrossRef] [Green Version]
- Seng, G.; Linder, F. Vibrational excitation of polar molecules by electron impact. II. Direct and resonant excitation in H2O. J. Phys. B At. Mol. Phys. 1976, 9, 2539. [Google Scholar] [CrossRef]
- Ralphs, K.; Serna, G.; Hargreaves, L.R.; Khakoo, M.A.; Winstead, C.; McKoy, V. Excitation of the six lowest electronic transitions in water by 9–20 eV electrons. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 125201. [Google Scholar] [CrossRef]
- Thorn, P.A.; Brunger, M.J.; Teubner, P.J.O.; Diakomichalis, N.; Maddern, T.; Bolorizadeh, M.A.; Newell, W.R.; Kato, H.; Hoshino, M.; Tanaka, H.; et al. Cross sections and oscillator strengths for electron-impact excitation of the ÃB11 electronic state of water. J. Chem. Phys. 2007, 126, 064306. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K. Scaled Born cross sections for excitations of H2 by electron impact. J. Chem. Phys. 2007, 126, 064305. [Google Scholar] [CrossRef]
- Brunger, M.J. Electron scattering and transport in biofuels, biomolecules and biomass fragments. Int. Rev. Phys. Chem. 2017, 36, 333–376. [Google Scholar] [CrossRef]
- Machado, L.E.; Brescansin, L.M.; Iga, I.; Lee, M.-T. Elastic and rotational excitation cross-sections for electron-water collisions in the low- and intermediate-energy ranges. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2005, 33, 193–199. [Google Scholar] [CrossRef]
- Harb, T.; Kedzierski, W.; McConkey, J.W. Production of ground state OH following electron impact on H2O. J. Chem. Phys. 2001, 115, 5507. [Google Scholar] [CrossRef]
- Kedzierski, W.; Derbyshire, J.; Malone, C.; McConkey, J.W. Isotope effects in the electron impact break-up of water. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 5361. [Google Scholar] [CrossRef]
- Lindsay, B.G.; Mangan, M.A. 5.1 Ionization. Interact. Photons Electrons Mol. 2005, 5001–5077. [Google Scholar] [CrossRef]
- Straub, H.C.; Lindsay, B.G.; Smith, K.A.; Stebbings, R.F. Absolute partial cross sections for electron-impact ionization of H2O and D2O from threshold to 1000 eV. J. Chem. Phys. 1998, 108, 109–116. [Google Scholar] [CrossRef]
- Blanco, F.; García, G. Screening corrections for calculation of electron scattering from polyatomic molecules. Phys. Lett. A 2003, 317, 458–462. [Google Scholar] [CrossRef]
- Blanco, F.; Ellis-Gibbings, L.; García, G. Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules. Chem. Phys. Lett. 2016, 645, 71–75. [Google Scholar] [CrossRef]
- Dubuis, A.T.; Costa, F.; da Silva, F.F.; Limão-Vieira, P.; Oller, J.C.; Blanco, F.; García, G. Total electron scattering cross section from pyridine molecules in the energy range 10–1000 eV. Chem. Phys. Lett. 2018, 699, 182–187. [Google Scholar] [CrossRef]
- Jain, A. Theoretical study of the total (elastic+inelastic) cross sections for electron -H2O (NH3) scattering at 10-3000 eV. J. Phys. B At. Mol. Opt. Phys. 1988, 21, 905–924. [Google Scholar] [CrossRef]
- Álvarez, L.; Costa, F.; Lozano, A.I.; Oller, J.C.; Muñoz, A.; Blanco, F.; Limão-Vieira, P.; White, R.D.; Brunger, M.J.; García, G. Electron scattering cross sections from nitrobenzene in the energy range 0.4–1000 eV: The role of dipole interactions in measurements and calculations. Phys. Chem. Chem. Phys. 2020, 22, 13505–13515. [Google Scholar] [CrossRef]
- El-Zein, A.A.A.; Brunger, M.J.; Newell, W.R. Excitation of vibrational quanta in water by electron impact. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 5033. [Google Scholar] [CrossRef]
- Blanco, F.; Roldán, A.M.; Krupa, K.; McEachran, R.P.; White, R.D.; Marjanović, S.; Petrović, Z.L.; Brunger, M.J.; Machacek, J.R.; Buckman, S.J.; et al. Scattering data for modelling positron tracks in gaseous and liquid water. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 145001. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.M.; Galiatsatos, P.G.; Gorfinkiel, J.D.; Harvey, A.G.; Lysaght, M.A.; Madden, D.; Mašín, Z.; Plummer, M.; Tennyson, J.; Varambhia, H.N. UKRmol: A low-energy electron-and positron-molecule scattering suite. Eur. Phys. J. D 2012, 66, 58. [Google Scholar] [CrossRef]
- Gorfinkiel, J.D.; Morgan, L.A.; Tennyson, J. Electron impact dissociative excitation of water within the adiabatic nuclei approximation. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 543–555. [Google Scholar] [CrossRef]
- Sanna, N.; Gianturco, F.A. Differential cross sections for electron/positron scattering from polyatomic molecules. Comput. Phys. Commun. 1998, 114, 142–167. [Google Scholar] [CrossRef]
- Gianturco, F.A.; Jain, A. The theory of electron scattering from polyatomic molecules. Phys. Rep. 1986, 143, 347–425. [Google Scholar] [CrossRef]
- Mašín, Z. DCS: A Program to Generate Orientation-Averaged DCS for Electronically Elastic and Inelastic Collsions. Available online: https://gitlab.com/Masin/DCS (accessed on 1 May 2021).
Energy | Elastic + Rotational | Electron Attachment | Ionization | Vibrational Excitation | Electronic Excitation | Neutral Dissociation | ||
---|---|---|---|---|---|---|---|---|
0.1 | 987.8 | 0 | 0 | 0 | 0 | 0 | 987.8 | 987.8 |
0.2 | 533.1 | 0 | 0 | 0.096 | 0 | 0 | 533.2 | 533.1 |
0.3 | 368.1 | 0 | 0 | 2.764 | 0 | 0 | 370.9 | 368.1 |
0.4 | 282.1 | 0 | 0 | 2.509 | 0 | 0 | 284.6 | 282.1 |
0.5 | 229.0 | 0 | 0 | 1.446 | 0 | 0 | 230.4 | 229 |
0.6 | 193.0 | 0 | 0 | 0.945 | 0 | 0 | 193.9 | 193 |
0.7 | 166.9 | 0 | 0 | 0.948 | 0 | 0 | 167.8 | 166.9 |
0.8 | 147.2 | 0 | 0 | 0.951 | 0 | 0 | 148.15 | 147.2 |
0.9 | 131.7 | 0 | 0 | 0.861 | 0 | 0 | 132.6 | 131.7 |
1 | 119.3 | 0 | 0 | 0.830 | 0 | 0 | 120.13 | 119.3 |
1.2 | 101.8 | 0 | 0 | 0.826 | 0 | 0 | 102.7 | 100.6 |
1.5 | 81.6 | 0 | 0 | 0.826 | 0 | 0 | 82.4 | 81.8 |
2 | 63.1 | 0 | 0 | 0.489 | 0 | 0 | 63.6 | 63.1 |
3 | 43.6 | 0 | 0 | 0.674 | 0 | 0 | 44.3 | 43.6 |
4 | 36.2 | 0 | 0 | 0.598 | 0 | 0 | 36.8 | 36.2 |
5 | 31.5 | 8.2 × 10−4 | 0 | 0.760 | 0 | 0 | 32.3 | 31.5 |
6 | 28.6 | 0.0328 | 0 | 1.005 | 0 | 0 | 29.6 | 28.6 |
7 | 25.5 | 0.0331 | 0 | 1.122 | 0.01 | 0 | 26.6 | 25.5 |
8 | 22.8 | 0.0128 | 0 | 1.112 | 0.10 | 0 | 24.0 | 22.8 |
9 | 21.2 | 0.0144 | 0 | 1.047 | 0.180 | 0.034 | 22.5 | 21.2 |
10 | 20.8 | 0.0054 | 0 | 0.955 | 0.268 | 0.103 | 22.13 | 20.9 |
12 | 19.0 | 0.0054 | 0 | 0.738 | 0.225 | 0.213 | 20.17 | 19.5 |
15 | 16.5 | 3.6 × 10−4 | 0.126 | 0.438 | 0.193 | 0.330 | 17.6 | 17.2 |
17 | 15.1 | 1.0 × 10−4 | 0.245 | 0.316 | 0.175 | 0.390 | 16.3 | 16.5 |
20 | 13.6 | 0 | 0.428 | 0.225 | 0.155 | 0.481 | 14.9 | 15.7 |
25 | 11.7 | 0 | 0.761 | 0.15309 | 0.129 | 0.681 | 13.4 | 14.1 |
30 | 10.1 | 0 | 1.02 | 0.1217 | 0.148 | 0.893 | 12.3 | 12.9 |
35 | 8.9 | 0 | 1.26 | 0.10089 | 0.133 | 1.056 | 11.4 | 12.2 |
40 | 7.9 | 0 | 1.43 | 0.08432 | 0.131 | 1.169 | 10.7 | 11.5 |
45 | 7.3 | 0 | 1.59 | 0.07144 | 0.129 | 1.245 | 10.3 | 10.9 |
50 | 6.6 | 0 | 1.72 | 0.0617 | 0.126 | 1.30 | 9.8 | 10.2 |
75 | 4.4 | 0 | 2.04 | 0.04101 | 0.112 | 1.44 | 8.10 | 8.6 |
100 | 3.4 | 0 | 2.16 | 0.0168 | 0.098 | 1.41 | 7.11 | 7.4 |
Process | 3 eV 2.5 mTorr | 10 eV 5.0 mTorr | 10 eV 10.0 mTorr | 70 eV 10.0 mTorr | 70 eV 20.0 mTorr |
---|---|---|---|---|---|
Elastic + Rotational | 1.99 | 2.41 | 6.07 | 3.77 | 14.43 |
Ionization | 0.0 | 0.0 | 0.0 | 0.36 | 0.70 |
Electronic Exc. | 0.0 | 0.03 | 0.06 | 0.03 | 0.09 |
Vibrational Exc. | 0.03 | 0.10 | 0.23 | 0.07 | 0.32 |
Attachment | 0.0 | 0.001 | 0.002 | 0.001 | 0.002 |
Neutral Dissociation | 0.0 | 0.01 | 0.02 | 0.27 | 0.55 |
Total Interactions | 2.02 | 2.54 | 6.38 | 4.50 | 16.09 |
Deposited Energy | 0.009 eV | 0.271 eV | 0.620 eV | 5.002 eV | 9.902 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Abenza, A.; Lozano, A.I.; Oller, J.C.; Blanco, F.; Gorfinkiel, J.D.; Limão-Vieira, P.; García, G. Evaluation of Recommended Cross Sections for the Simulation of Electron Tracks in Water. Atoms 2021, 9, 98. https://doi.org/10.3390/atoms9040098
García-Abenza A, Lozano AI, Oller JC, Blanco F, Gorfinkiel JD, Limão-Vieira P, García G. Evaluation of Recommended Cross Sections for the Simulation of Electron Tracks in Water. Atoms. 2021; 9(4):98. https://doi.org/10.3390/atoms9040098
Chicago/Turabian StyleGarcía-Abenza, Adrián, Ana I. Lozano, Juan C. Oller, Francisco Blanco, Jimena D. Gorfinkiel, Paulo Limão-Vieira, and Gustavo García. 2021. "Evaluation of Recommended Cross Sections for the Simulation of Electron Tracks in Water" Atoms 9, no. 4: 98. https://doi.org/10.3390/atoms9040098