Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Cell Lines, and Culture Conditions
2.2. Reagents and Chemical Synthesis
2.3. Bacterial Susceptibility Assay and Cytotoxicity Testing
2.4. Lipase Activity Assay
2.5. Protein Secretion Analysis
2.6. Mtb Macrophage Infection Experiments
2.7. Proteomic Analysis
2.8. Construction of the Reporter Plasmid and Reporter Assay
2.9. Zebrafish Embryos Infection Experiments and Data Analysis
3. Results
3.1. Characterization of 1,2,4-oxadiazole Derivatives Using ESX-5 Secretion Reporter Assay
3.2. The 1,2,4-oxadiazole Derivatives 36.1 and 36.3 Elicit Hypersecretion of ESX-5 PE_PGRS Substrates
3.3. The 1,2,4-oxadiazole Derivatives 36.1 and 36.3 Induced the Overexpression of PE_PGRS MMAR_5294
3.4. 1,2,4-oxadiazoles Display Significant in vivo Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO—Global Tuberculosis Programme, Global Tuberculosis Report 2021, 14 October 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 10 December 2022).
- Brennan, P.J.; Nikaido, H. The Envelope of Mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [Google Scholar] [CrossRef] [PubMed]
- Feltcher, M.E.; Sullivan, J.T.; Braunstein, M. Protein Export Systems of Mycobacterium tuberculosis: Novel Targets for Drug Development? Future Microbiol. 2010, 5, 1581–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, A.M.; Gey van Pittius, N.C.; Champion, P.A.D.; Cox, J.; Luirink, J.; Vandenbroucke-Grauls, C.M.J.E.; Appelmelk, B.J.; Bitter, W. Type VII Secretion—Mycobacteria Show the Way. Nat. Rev. Microbiol. 2007, 5, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Ates, L.S.; Houben, E.N.G.; Bitter, W. Type VII Secretion: A Highly Versatile Secretion System. Microbiol. Spectr. 2016, 4, 357–384. [Google Scholar] [CrossRef] [Green Version]
- Di Luca, M.; Bottai, D.; Batoni, G.; Orgeur, M.; Aulicino, A.; Counoupas, C.; Campa, M.; Brosch, R.; Esin, S. The ESX-5 Associated EccB-EccC Locus Is Essential for Mycobacterium tuberculosis Viability. PLoS ONE 2012, 7, e52059. [Google Scholar] [CrossRef]
- Ates, L.S.; Ummels, R.; Commandeur, S.; van de Weerd, R.; Sparrius, M.; Weerdenburg, E.; Alber, M.; Kalscheuer, R.; Piersma, S.R.; Abdallah, A.M.; et al. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria. PLoS Genet. 2015, 11, e1005190. [Google Scholar] [CrossRef]
- Ates, L.S.; van der Woude, A.D.; Bestebroer, J.; van Stempvoort, G.; Musters, R.J.P.; Garcia-Vallejo, J.J.; Picavet, D.I.; van de Weerd, R.; Maletta, M.; Kuijl, C.P.; et al. The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10. PLoS Pathog. 2016, 12, e1005696. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, A.M.; Savage, N.D.L.; van Zon, M.; Wilson, L.; Vandenbroucke-Grauls, C.M.J.E.; van der Wel, N.N.; Ottenhoff, T.H.M.; Bitter, W. The ESX-5 Secretion System of Mycobacterium marinum Modulates the Macrophage Response. J. Immunol. 2008, 181, 7166–7175. [Google Scholar] [CrossRef] [Green Version]
- Ates, L.S. New Insights into the Mycobacterial PE and PPE Proteins Provide a Framework for Future Research. Mol. Microbiol. 2020, 113, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Banu, S.; Honoré, N.; Saint-Joanis, B.; Philpott, D.; Prévost, M.-C.; Cole, S.T. Are the PE-PGRS Proteins of Mycobacterium tuberculosis Variable Surface Antigens? Mol. Microbiol. 2002, 44, 9–19. [Google Scholar] [CrossRef]
- Daleke, M.H.; Ummels, R.; Bawono, P.; Heringa, J.; Vandenbroucke-Grauls, C.M.J.E.; Luirink, J.; Bitter, W. General Secretion Signal for the Mycobacterial Type VII Secretion Pathway. Proc. Natl. Acad. Sci. USA 2012, 109, 11342–11347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, C.; Daniel, J.; Sirakova, T.D.; Abomoelak, B.; Dubey, V.S.; Kolattukudy, P.E. A Novel Lipase Belonging to the Hormone-Sensitive Lipase Family Induced under Starvation to Utilize Stored Triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem. 2006, 281, 3866–3875. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, N.; Pawar, S.; Sirakova, T.D.; Deb, C.; Warren, W.L.; Kolattukudy, P.E. Human Granuloma in vitro Model, for TB Dormancy and Resuscitation. PLoS ONE 2013, 8, e53657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burggraaf, M.J.; Speer, A.; Meijers, A.S.; Ummels, R.; van der Sar, A.M.; Korotkov, K.V.; Bitter, W.; Kuijl, C. Type VII Secretion Substrates of Pathogenic Mycobacteria Are Processed by a Surface Protease. MBio 2019, 10, e01951-19. [Google Scholar] [CrossRef] [Green Version]
- Stinear, T.P.; Seemann, T.; Harrison, P.F.; Jenkin, G.A.; Davies, J.K.; Johnson, P.D.R.; Abdellah, Z.; Arrowsmith, C.; Chillingworth, T.; Churcher, C.; et al. Insights from the Complete Genome Sequence of Mycobacterium Marinum on the Evolution of Mycobacterium tuberculosis. Genome Res. 2008, 18, 729–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, H.F.; Shepard, C.C. Effect of environmental temperatures on infection with Mycobacterium marinum (Balnei) of mice and a number of poikilothermic species. J. Bacteriol. 1963, 86, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Leeuwen, L.M.; van der Sar, A.M.; Bitter, W. Animal Models of Tuberculosis: Zebrafish. Cold Spring Harb. Perspect. Med. 2014, 5, a018580. [Google Scholar] [CrossRef] [Green Version]
- Stoop, E.J.M.; Schipper, T.; Rosendahl Huber, S.K.; Nezhinsky, A.E.; Verbeek, F.J.; Gurcha, S.S.; Besra, G.S.; Vandenbroucke-Grauls, C.M.J.E.; Bitter, W.; van der Sar, A.M. Zebrafish Embryo Screen for Mycobacterial Genes Involved in the Initiation of Granuloma Formation Reveals a Newly Identified ESX-1 Component. Dis. Model. Mech. 2011, 4, 526–536. [Google Scholar] [CrossRef] [Green Version]
- van der Sar, A.M.; Abdallah, A.M.; Sparrius, M.; Reinders, E.; Vandenbroucke-Grauls, C.M.J.E.; Bitter, W. Mycobacterium marinum Strains Can Be Divided into Two Distinct Types Based on Genetic Diversity and Virulence. Infect. Immun. 2004, 72, 6306–6312. [Google Scholar] [CrossRef] [Green Version]
- Tukenmez, H.; Edstrom, I.; Ummanni, R.; Fick, S.B.; Sundin, C.; Elofsson, M.; Larsson, C. Mycobacterium Tuberculosis Virulence Inhibitors Discovered by Mycobacterium marinum High-Throughput Screening. Sci. Rep. 2019, 9, 26. [Google Scholar] [CrossRef]
- Swaim, L.E.; Connolly, L.E.; Volkman, H.E.; Humbert, O.; Born, D.E.; Ramakrishnan, L. Mycobacterium marinum Infection of Adult Zebrafish Causes Caseating Granulomatous Tuberculosis and Is Moderated by Adaptive Immunity. Infect. Immun. 2006, 74, 6108–6117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habjan, E.; Ho, V.Q.T.; Gallant, J.; van Stempvoort, G.; Jim, K.K.; Kuijl, C.; Geerke, D.P.; Bitter, W.; Speer, A. An Anti-Tuberculosis Compound Screen Using a Zebrafish Infection Model Identifies an Aspartyl-TRNA Synthetase Inhibitor. Dis. Model. Mech. 2021, 14, dmm049145. [Google Scholar] [CrossRef] [PubMed]
- Ho, V.Q.T.; Verboom, T.; Rong, M.K.; Habjan, E.; Bitter, W.; Speer, A. Heterologous Expression of EthA and KatG in Mycobacterium Marinum Enables the Rapid Identification of New Prodrugs Active against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2021, 65, e01445-20. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, E.; Rong, M.K.; Speer, A.; Bitter, W.; Cole, S.T. Inhibition of Mycobacterial Type VII Secretion. U.S. Patent US20220280487A1, 9 September 2022. [Google Scholar]
- White, R.M.; Sessa, A.; Burke, C.; Bowman, T.; LeBlanc, J.; Ceol, C.; Bourque, C.; Dovey, M.; Goessling, W.; Burns, C.E.; et al. Transparent Adult Zebrafish as a Tool for in vivo Transplantation Analysis. Cell Stem Cell 2008, 2, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-Group-Containing Drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef]
- Biernacki, K.; Daśko, M.; Ciupak, O.; Kubiński, K.; Rachon, J.; Demkowicz, S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals 2020, 13, 111. [Google Scholar] [CrossRef]
- van der Wel, N.; Hava, D.; Houben, D.; Fluitsma, D.; van Zon, M.; Pierson, J.; Brenner, M.; Peters, P.J. M. tuberculosis and M. leprae Translocate from the Phagolysosome to the Cytosol in Myeloid Cells. Cell 2007, 129, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Houben, D.; Demangel, C.; van Ingen, J.; Perez, J.; Baldeón, L.; Abdallah, A.M.; Caleechurn, L.; Bottai, D.; van Zon, M.; de Punder, K.; et al. ESX-1-Mediated Translocation to the Cytosol Controls Virulence of Mycobacteria. Cell. Microbiol. 2012, 14, 1287–1298. [Google Scholar] [CrossRef]
- Simeone, R.; Bottai, D.; Frigui, W.; Majlessi, L.; Brosch, R. ESX/Type VII Secretion Systems of Mycobacteria: Insights into Evolution, Pathogenicity and Protection. Tuberculosis 2015, 95 (Suppl. S1), S150–S154. [Google Scholar] [CrossRef]
- Atmaram Upare, A.; Gadekar, P.K.; Sivaramakrishnan, H.; Naik, N.; Khedkar, V.M.; Sarkar, D.; Choudhari, A.; Mohana Roopan, S. Design, Synthesis and Biological Evaluation of (E)-5-Styryl-1,2,4-Oxadiazoles as Anti-Tubercular Agents. Bioorg. Chem. 2019, 86, 507–512. [Google Scholar] [CrossRef]
- Ranjith Kumar, R.; Perumal, S.; Menéndez, J.C.; Yogeeswari, P.; Sriram, D. Antimycobacterial Activity of Novel 1,2,4-Oxadiazole-Pyranopyridine/Chromene Hybrids Generated by Chemoselective 1,3-Dipolar Cycloadditions of Nitrile Oxides. Bioorg. Med. Chem. 2011, 19, 3444–3450. [Google Scholar] [CrossRef] [PubMed]
- Deb, P.K.; Al-Shar’i, N.A.; Venugopala, K.N.; Pillay, M.; Borah, P. In Vitro Anti-TB Properties, in Silico Target Validation, Molecular Docking and Dynamics Studies of Substituted 1,2,4-Oxadiazole Analogues against Mycobacterium tuberculosis. J. Enzym. Inhib. Med. Chem. 2021, 36, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Atmaram, U.A.; Roopan, S.M. Biological Activity of Oxadiazole and Thiadiazole Derivatives. Appl. Microbiol. Biotechnol. 2022, 106, 3489–3505. [Google Scholar] [CrossRef]
- Dheenadhayalan, V.; Delogu, G.; Sanguinetti, M.; Fadda, G.; Brennan, M.J. Variable Expression Patterns of Mycobacterium tuberculosis PE_PGRS Genes: Evidence That PE_PGRS16 and PE_PGRS26 Are Inversely Regulated in vivo. J. Bacteriol. 2006, 188, 3721–3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weerdenburg, E.M.; Abdallah, A.M.; Rangkuti, F.; Abd El Ghany, M.; Otto, T.D.; Adroub, S.A.; Molenaar, D.; Ummels, R.; Ter Veen, K.; van Stempvoort, G.; et al. Genome-Wide Transposon Mutagenesis Indicates That Mycobacterium marinum Customizes Its Virulence Mechanisms for Survival and Replication in Different Hosts. Infect. Immun. 2015, 83, 1778–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Maio, F.; Berisio, R.; Manganelli, R.; Delogu, G. PE_PGRS Proteins of Mycobacterium tuberculosis: A Specialized Molecular Task Force at the Forefront of Host-Pathogen Interaction. Virulence 2020, 11, 898–915. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Kim, S.; Al Mahmud, H.; Islam, M.I.; Yoon, Y.; Cho, H.D.; Nam, K.W.; Choi, J.; Gil, Y.S.; Lee, B.E.; et al. A Novel Class of Antimicrobial Drugs Selectively Targets a Mycobacterium tuberculosis PE-PGRS Protein. PLoS Biol. 2022, 20, e3001648. [Google Scholar] [CrossRef]
- DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; et al. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. MBio 2017, 8, e02133-16. [Google Scholar] [CrossRef] [Green Version]
- Minato, Y.; Gohl, D.M.; Thiede, J.M.; Chacón, J.M.; Harcombe, W.R.; Maruyama, F.; Baughn, A.D. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. mSystems 2019, 4, e00070-19. [Google Scholar] [CrossRef] [Green Version]
- De Majumdar, S.; Sikri, K.; Ghosh, P.; Jaisinghani, N.; Nandi, M.; Gandotra, S.; Mande, S.; Tyagi, J.S. Genome Analysis Identifies a Spontaneous Nonsense Mutation in PpsD Leading to Attenuation of Virulence in Laboratory-Manipulated Mycobacterium tuberculosis. BMC Genom. 2019, 20, 129. [Google Scholar] [CrossRef]
- Singh, V.K.; Srivastava, M.; Dasgupta, A.; Singh, M.P.; Srivastava, R.; Srivastava, B.S. Increased Virulence of Mycobacterium tuberculosis H37Rv Overexpressing LipY in a Murine Model. Tuberculosis 2014, 94, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Long, Q.; Zeng, J.; Li, P.; Yang, W.; Chen, X.; Xie, J. Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages via Blocking Innate Immunity and Inhibition of Host Defense. Sci. Rep. 2017, 7, 46716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Pandey, M.; Pandey, A.K.; Tiwari, P.K.; Amrathlal, R.S. Novel Genetic Polymorphisms Identified in the Clinical Isolates of Mycobacterium tuberculosis PE_PGRS33 Gene Modulate Cytokines Expression and Promotes Survival in Macrophages. J. Infect. Public Health 2022, 15, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Rowland, J.L.; Niederweis, M. A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium tuberculosis. J. Bacteriol. 2013, 195, 3724–3733. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.M.L.; Ray, N.; Thomas, J.D.; Robinson, C.; Bolhuis, A. Quantitative Export of a Reporter Protein, GFP, by the Twin-Arginine Translocation Pathway in Escherichia Coli. Biochem. Biophys. Res. Commun. 2003, 304, 279–284. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, S.; Fei, H.; Cheng, J.; Chen, F. Copper-Catalyzed Cyanation of Arylboronic Acids Using DDQ as Cyanide Source. Synlett 2012, 23, 2247–2250. [Google Scholar] [CrossRef]
- Yang, C.; Han, J.; Liu, J.; Gu, M.; Li, Y.; Wen, J.; Yu, H.; Hu, S.; Wang, X. “One-pot” synthesis of amidoxime via Pd-catalyzed cyanation and amidoximation. Org. Biomol. Chem. 2015, 13, 2541–2545. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Lin, C.; Wang, J.; Wen, L. One Base for Two Shots: Metal-Free Substituent-Controlled Synthesis of Two Kinds of Oxadiazine Derivatives from Alkynylbenziodoxolones and Amidoximes. J. Org. Chem. 2019, 84, 6904–6915. [Google Scholar] [CrossRef]
- Xin, H.; Pang, B.; Choi, J.; Akkad, W.; Morimoto, H.; Ohshima, T. C-C Bond Cleavage of Unactivated 2-Acylimidazoles. J. Org. Chem. 2020, 85, 11592–11606. [Google Scholar] [CrossRef]
- Kurouchi, H.; Ohwada, T. Synthesis of Medium-Ring-Sized Benzolactams by Using Strong Electrophiles and Quantitative Evaluation of Ring-Size Dependency of the Cyclization Reaction Rate. J. Org. Chem. 2020, 85, 876–901. [Google Scholar] [CrossRef]
- Yoshimura, A.; Middleton, K.R.; Todora, A.D.; Kastern, B.J.; Koski, S.R.; Maskaev, A.V.; Zhdankin, V.V. Hypervalent Iodine Catalyzed Generation of Nitrile Oxides from Oximes and their Cycloaddition with Alkenes or Alkynes. Org. Lett. 2013, 15, 4010–4013. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Stephan, J.; Bender, J.; Wolschendorf, F.; Hoffmann, C.; Roth, E.; Mailänder., C.; Engelhardt, H.; Niederweis, M. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol. Microbiol. 2005, 58, 714–730. [Google Scholar] [CrossRef]
- Ofer, N.; Wishkautzan, M.; Meijler, M.; Wang, Y.; Speer, A.; Niederweis, M.; Gur, E. Ectoine biosynthesis in Mycobacterium smegmatis. Appl. Environ. Microbiol. 2012, 78, 7483–7486. [Google Scholar] [CrossRef]
Protein | Average Count DMSO-Treated | Average Count 36.3-Treated | Fold Change | p-Value |
---|---|---|---|---|
MMAR_3268 MMAR_3271 MMAR_3279 MMAR_0851 | 0 | 38.39 | ∞ | 0.0004 |
MMAR_5294 | 0 | 13.77 | ∞ | 0.0032 |
CobN | 0 | 7.98 | ∞ | 0.0082 |
MMAR_4621 | 0 | 9.605 | ∞ | 0.0055 |
MmpL5 | 1.11 | 28.29 | 25.40 | 0.001 |
MMAR_5283 | 1.11 | 9.42 | 8.46 | 0.0322 |
DnaE1 | 6.68 | 33.62 | 5.03 | 0.0125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, V.Q.T.; Rong, M.K.; Habjan, E.; Bommer, S.D.; Pham, T.V.; Piersma, S.R.; Bitter, W.; Ruijter, E.; Speer, A. Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles. Biomolecules 2023, 13, 211. https://doi.org/10.3390/biom13020211
Ho VQT, Rong MK, Habjan E, Bommer SD, Pham TV, Piersma SR, Bitter W, Ruijter E, Speer A. Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles. Biomolecules. 2023; 13(2):211. https://doi.org/10.3390/biom13020211
Chicago/Turabian StyleHo, Vien Q. T., Mark K. Rong, Eva Habjan, Samantha D. Bommer, Thang V. Pham, Sander R. Piersma, Wilbert Bitter, Eelco Ruijter, and Alexander Speer. 2023. "Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles" Biomolecules 13, no. 2: 211. https://doi.org/10.3390/biom13020211
APA StyleHo, V. Q. T., Rong, M. K., Habjan, E., Bommer, S. D., Pham, T. V., Piersma, S. R., Bitter, W., Ruijter, E., & Speer, A. (2023). Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles. Biomolecules, 13(2), 211. https://doi.org/10.3390/biom13020211