Compliant and Flexible Robotic System with Parallel Continuum Mechanism for Transoral Surgery: A Pilot Cadaveric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Overview
2.2. Cadaveric Trials
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIS | Minimally invasive surgery |
TORS | Transoral robotic surgery |
TOS | Transoral surgery |
FDA | Food and Drug Administration |
DOF | Degree of freedom |
Ni-Ti | Nitinol |
References
- Nakadate, R.; Iwasa, T.; Onogi, S.; Arata, J.; Oguri, S.; Okamoto, Y.; Akahoshi, T.; Eto, M.; Hashizume, M. Surgical Robot for Intraluminal Access: An Ex Vivo Feasibility Study. Cyborg Bionic Syst. 2020, 2020, 8378025. [Google Scholar] [CrossRef]
- Ohuchida, K. Robotic Surgery in Gastrointestinal Surgery. Cyborg Bionic Syst. 2020, 2020, 9724807. [Google Scholar] [CrossRef]
- Hong, M.B.; Jo, Y.H. Design of a Novel 4-DOF Wrist-Type Surgical Instrument with Enhanced Rigidity and Dexterity. IEEE/ASME Trans. Mechatron. 2014, 19, 500–511. [Google Scholar] [CrossRef]
- Hwang, M.; Kwon, D.S. Strong Continuum Manipulator for Flexible Endoscopic Surgery. IEEE/ASME Trans. Mechatron. 2019, 24, 2193–2203. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, D.; Qian, C.; Duan, X.; Li, C. Design of a flexible robot toward transbronchial lung biopsy. Robotica 2022, 1–11. [Google Scholar] [CrossRef]
- Moore, E.J.; Janus, J.; Kasperbauer, J. Transoral robotic surgery of the oropharynx: Clinical and anatomic considerations. Clin. Anat. 2012, 25, 135–141. [Google Scholar] [CrossRef]
- More, Y.I.; Tsue, T.T.; Girod, D.A.; Harbison, J.; Sykes, K.J.; Williams, C.; Shnayder, Y. Functional Swallowing Outcomes Following Transoral Robotic Surgery vs Primary Chemoradiotherapy in Patients with Advanced-Stage Oropharynx and Supraglottis Cancers. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, S.M.; Moore, E.J.; Laborde, R.R.; Garcia, J.J.; Janus, J.R.; Price, D.L.; Olsen, K.D. Transoral surgery alone for human-papillomavirus-associated oropharyngeal squamous cell carcinoma. Ear Nose Throat J. 2013, 92, 76–83. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, W.S.; Byeon, H.K.; Lee, S.Y.; Kim, S.H. Oncological and functional outcomes of transoral robotic surgery for oropharyngeal cancer. Br. J. Oral Maxillofac. Surg. 2013, 51, 408–412. [Google Scholar] [CrossRef]
- Poon, H.; Li, C.; Gao, W.; Ren, H.; Lim, C.M. Evolution of robotic systems for transoral head and neck surgery. Oral Oncol. 2018, 87, 82–88. [Google Scholar] [CrossRef]
- Rivera-Serrano, C.M.; Johnson, P.; Zubiate, B.; Kuenzler, R.; Choset, H.; Zenati, M.; Tully, S.; Duvvuri, U. A transoral highly flexible robot: Novel Technology and Application. Laryngoscope 2012, 122, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Haus, B.M.; Kambham, N.; Le, D.; Moll, F.M.; Gourin, C.; Terris, D.J. Surgical robotic applications in otolaryngology. Laryngoscope 2010, 113, 1139–1144. [Google Scholar] [CrossRef]
- Mcleod, I.K.; Melder, P.C. Da Vinci robot-assisted excision of a vallecular cyst: A case report. Ear Nose Throat J. 2005, 84, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.H.; Gross, N.D.; Richmon, J.D. Surgeon Experience and Complications with Transoral Robotic Surgery (TORS). Otolaryngol.-Head Neck Surg. 2013, 149, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Wong, E.W.; Tsang, R.K.; Holsinger, F.C.; Tong, M.C.; Chiu, P.W.; Ng, S.S. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery. Eur. Arch.-Oto-Rhino-Laryngol. 2017, 274, 3993–3996. [Google Scholar] [CrossRef] [Green Version]
- Mandapathil, M.; Duvvuri, U.; Güldner, C.; Teymoortash, A.; Lawson, G.; Werner, J.A. Transoral surgery for oropharyngeal tumors using the Medrobotics Flex ystem—A case report. Int. J. Surg. Case Rep. 2015, 10, 173–175. [Google Scholar] [CrossRef] [Green Version]
- Berthet-Rayne, P.; Gras, G.; Leibrandt, K.; Wisanuvej, P.; Schmitz, A.; Seneci, C.A.; Yang, G.Z. The i2snake Robotic Platform for Endoscopic Surgery. Ann. Biomed. Eng. J. Biomed. Eng. Soc. 2018, 46, 1663–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Ng, C.S. Future of Uniportal Video-Assisted Thoracoscopic Surgery—Emerging Technology; AME Publications: Hong Kong, China, 2016. [Google Scholar]
- Gerald, T.; Tan, H.K.; Khanh, N.T.; Jay, P.S.; Gopalakrishna, I.N. Use of the EndoMaster robot-assisted surgical system in transoral robotic surgery: A cadaveric study. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1930. [Google Scholar]
- Chauhan, M.; Deshpande, N.; Caldwell, D.G.; Mattos, L.S. Design and modelling of a 3 dof articulating robotic micro-surgical forceps for trans-oral laser microsurgery. J. Med. Devices 2019, 13, ARTN 021006. [Google Scholar] [CrossRef]
- Simaan, N.; Kai, X.; Wei, W.; Kapoor, A.; Kazanzides, P.; Taylor, R.; Flint, P. Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat. Int. J. Robot. Res. 2009, 28, 1134–1153. [Google Scholar] [CrossRef]
- Gafford, J.B.; Webster, S.; Dillon, N.; Blum, E.; Hendrick, R.; Maldonado, F.; Gillaspie, E.A.; Rickman, O.B.; Herrell, S.D.; Webster, R.J. A Concentric Tube Robot System for Rigid Bronchoscopy: A Feasibility Study on Central Airway Obstruction Removal. Ann. Biomed. Eng. 2020, 48, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Miguel, D.M.; Cecília, L.; Costa, L.; Geraldo, L.F. Pharyngeal dimensions in healthy men and women. Clinics 2007, 62, 5. [Google Scholar]
- Ren, H. Computer-assisted transoral surgery with flexible robotics and navigation technologies: A review of recent progress and research challenges. Crit. Rev. Biomed. Eng. 2013, 41, 365–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Li, C.; Xiao, X.; Lim, C.M.; Ren, H. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism. Ann. Biomed. Eng. 2019, 47, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; King, N.; Ren, H. A Skull-Mounted Robot with a Compact and Lightweight Parallel Mechanism for Positioning in Minimally Invasive Neurosurgery. Ann. Biomed. Eng. 2018, 46, 1465–1478. [Google Scholar] [CrossRef]
- Li, C.; Gu, X.; Xiao, X.; Lim, C.M.; Ren, H. A Robotic System with Multichannel Flexible Parallel Manipulators for Single Port Access Surgery. IEEE Trans. Ind. Inform. 2018, 15, 1678–1687. [Google Scholar] [CrossRef]
- Ren, H.; Li, C.; Qiu, L.; Lim, C.M. ACTORS: Adaptive and Compliant Transoral Robotic Surgery with Flexible Manipulators and Intelligent Guidance. In Handbook of Robotic and Image-Guided Surgery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 693–701. [Google Scholar]
- Li, C.; Gu, X.; Xiao, X.; Lim, C.M.; Ren, H. Flexible Robot with Variable Stiffness in Transoral Surgery. IEEE/ASME Trans. Mechatron. 2019, 25, 1–10. [Google Scholar] [CrossRef]
- Black, C.B.; Till, J.; Rucker, D.C. Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing. IEEE Trans. Robot. 2017, 34, 29–47. [Google Scholar] [CrossRef]
- Li, C.; Gu, X.; Ren, H. A Cable-Driven Flexible Robotic Grasper with Lego-Like Modular and Reconfigurable Joints. IEEE/ASME Trans. Mechatron. 2017, 22, 2757–2767. [Google Scholar] [CrossRef]
- Weinstein, G.S.; O’Malley, B.W.; Snyder, W.; Hockstein, N.G. Transoral Robotic Surgery: Supraglottic Partial Laryngectomy. Ann. Otol. Rhinol. Laryngol. 2007, 116, 19–23. [Google Scholar] [CrossRef]
- O’Malley, B.W.; Weinstein, G.S.; Snyder, W.; Hockstein, N.G. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2010, 116, 1465–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.J.; Serrano, C.; Castro, M.; Kuenzler, R.; Choset, H.; Tully, S.; Duvvuri, U. Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 2013, 123, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value | Units |
---|---|---|
Total DOF of the robot | 11 | - |
Dimension of the robot | 200 × 50 × 46.5 | mm |
Weight of the robot | 480 | g |
Maximum bending angle of the positioning part | 180 | deg |
Maximum translational displacement of the positioning part | 200 | mm |
Maximum bending angle of the manipulator | 45 | deg |
Maximum translational displacement of the manipulator | 20 | mm |
Maximum load capacity of the robot | 8.06 | N |
Materials | Stainless steel, nitinol alloy, and polylactic acid | - |
Operating mode | Master–slave teleoperation | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Gu, X.; Xiao, X.; Lim, C.M.; Ren, H. Compliant and Flexible Robotic System with Parallel Continuum Mechanism for Transoral Surgery: A Pilot Cadaveric Study. Robotics 2022, 11, 135. https://doi.org/10.3390/robotics11060135
Li C, Gu X, Xiao X, Lim CM, Ren H. Compliant and Flexible Robotic System with Parallel Continuum Mechanism for Transoral Surgery: A Pilot Cadaveric Study. Robotics. 2022; 11(6):135. https://doi.org/10.3390/robotics11060135
Chicago/Turabian StyleLi, Changsheng, Xiaoyi Gu, Xiao Xiao, Chwee Ming Lim, and Hongliang Ren. 2022. "Compliant and Flexible Robotic System with Parallel Continuum Mechanism for Transoral Surgery: A Pilot Cadaveric Study" Robotics 11, no. 6: 135. https://doi.org/10.3390/robotics11060135
APA StyleLi, C., Gu, X., Xiao, X., Lim, C. M., & Ren, H. (2022). Compliant and Flexible Robotic System with Parallel Continuum Mechanism for Transoral Surgery: A Pilot Cadaveric Study. Robotics, 11(6), 135. https://doi.org/10.3390/robotics11060135