Manipulation Planning for Cable Shape Control
Abstract
:1. Introduction
- We propose an innovative approach for controlling the shape of cables with dual robotic arms. This approach handles the large deformation tasks by decomposing the task into multiple simple ones.
- We define the robot’s motion planning as an optimization problem to minimize the shape error between the cable configuration and the targeted shape, ensuring accurate and stable deformation.
- We introduce a cable dynamic model, which is used for validating the manipulation approach.
- The approach is validated in two simulation environments proving its potential for applications that require precise control of cables and other DLOs.
2. Problem Formulation
3. Methodology
3.1. Path Generation
Algorithm 1 Cable Path Generation Algorithm |
|
3.2. Robot Motion Planning
4. Cable Mass–Spring Model
4.1. Length Preservation Force
4.2. Bending Force
4.3. Damping Force
5. Results
- Unilateral in–place deformation (UIDeform), where one cable end is fixed, and the deformation is carried out by one robot grasping the other cable end.
- Bilateral in–place deformation (BIDeform), where the cable is fixed at one end and being deformed by two robot end–effectors.
5.1. UIDeform vs. BIDeform
5.2. BMDeform
6. Discussion
- An innovative approach for controlling cable shape by decomposing large deformation tasks into simpler ones.
- The formulation of robot motion planning as an optimization problem to minimize shape error, ensuring precise and stable deformation.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Navas-Reascos, G.E.; Romero, D.; Stahre, J.; Caballero-Ruiz, A. Wire harness assembly process supported by collaborative robots: Literature review and call for R&D. Robotics 2022, 11, 65. [Google Scholar]
- Navas-Reascos, G.E.; Romero, D.; Rodriguez, C.A.; Guedea, F.; Stahre, J. Wire harness assembly process supported by a collaborative robot: A case study focus on ergonomics. Robotics 2022, 11, 131. [Google Scholar] [CrossRef]
- Heisler, P.; Steinmetz, P.; Yoo, I.S.; Franke, J. Automatization of the cable-routing-process within the automated production of wiring systems. Appl. Mech. Mater. 2017, 871, 186–192. [Google Scholar] [CrossRef]
- Jin, S.; Romeres, D.; Ragunathan, A.; Jha, D.K.; Tomizuka, M. Trajectory optimization for manipulation of deformable objects: Assembly of belt drive units. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 10002–10008. [Google Scholar]
- Phan, P.T.; Hoang, T.T.; Thai, M.T.; Low, H.; Davies, J.; Lovell, N.H.; Do, T.N. Smart surgical sutures using soft artificial muscles. Sci. Rep. 2021, 11, 22420. [Google Scholar] [CrossRef]
- Colan, J.; Nakanishi, J.; Aoyama, T.; Hasegawa, Y. Optimization-based constrained trajectory generation for robot-assisted stitching in endonasal surgery. Robotics 2021, 10, 27. [Google Scholar] [CrossRef]
- Herguedas, R.; López-Nicolás, G.; Aragüés, R.; Sagüés, C. Survey on multi-robot manipulation of deformable objects. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 977–984. [Google Scholar]
- Long, P.; Khalil, W.; Martinet, P. Dynamic modeling of cooperative robots holding flexible objects. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–31 July 2015; pp. 182–187. [Google Scholar]
- Alonso-Mora, J.; Knepper, R.; Siegwart, R.; Rus, D. Local motion planning for collaborative multi-robot manipulation of deformable objects. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Istanbul, Turkey, 27–31 July 2015; pp. 5495–5502. [Google Scholar]
- Li, X.; Wang, Z.; Liu, Y.H. Sequential Robotic Manipulation for Active Shape Control of Deformable Linear Objects. In Proceedings of the 2019 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Irkutsk, Russia, 4–9 August 2019; pp. 840–845. [Google Scholar]
- Lv, N.; Liu, J.; Xia, H.; Jia, Y. Dynamic Modeling and Control of Flexible Cables for Shape Forming. In Proceedings of the Dynamic Systems and Control Conference. American Society of Mechanical Engineers, Park City, UT, USA, 8–11 October 2019; Volume 59148, p. V001T03A006. [Google Scholar]
- Lv, N.; Liu, J.; Jia, Y. Coordinated Control of Flexible Cables With Human-Like Dual Manipulators. J. Dyn. Syst. Meas. Control 2021, 143, 081006. [Google Scholar] [CrossRef]
- Zhu, J.; Navarro, B.; Fraisse, P.; Crosnier, A.; Cherubini, A. Dual-arm robotic manipulation of flexible cables. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 479–484. [Google Scholar]
- Jin, S.; Wang, C.; Tomizuka, M. Robust deformation model approximation for robotic cable manipulation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 3–8 November 2019; pp. 6586–6593. [Google Scholar]
- Lagneau, R.; Krupa, A.; Marchal, M. Automatic shape control of deformable wires based on model-free visual servoing. IEEE Robot. Autom. Lett. 2020, 5, 5252–5259. [Google Scholar] [CrossRef]
- Yu, M.; Zhong, H.; Li, X. Shape control of deformable linear objects with offline and online learning of local linear deformation models. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 1337–1343. [Google Scholar]
- Berenson, D. Manipulation of deformable objects without modeling and simulating deformation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4525–4532. [Google Scholar]
- Almaghout, K.; Klimchik, A. Planar Shape Control of Deformable Linear Objects. IFAC-PapersOnLine 2022, 55, 2469–2474. [Google Scholar] [CrossRef]
- Almaghout, K.; Klimchik, A. Vision-Based Robotic Comanipulation for Deforming Cables. Russ. J. Nonlinear Dyn. 2022, 18, 843–858. [Google Scholar] [CrossRef]
- Nair, A.; Chen, D.; Agrawal, P.; Isola, P.; Abbeel, P.; Malik, J.; Levine, S. Combining self-supervised learning and imitation for vision-based rope manipulation. In Proceedings of the 2017 IEEE international conference on robotics and automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2146–2153. [Google Scholar]
- Tang, T.; Wang, C.; Tomizuka, M. A framework for manipulating deformable linear objects by coherent point drift. IEEE Robot. Autom. Lett. 2018, 3, 3426–3433. [Google Scholar] [CrossRef]
- Yan, M.; Zhu, Y.; Jin, N.; Bohg, J. Self-supervised learning of state estimation for manipulating deformable linear objects. IEEE Robot. Autom. Lett. 2020, 5, 2372–2379. [Google Scholar] [CrossRef]
- Laezza, R.; Gieselmann, R.; Pokorny, F.; Karayiannidis, Y. Shape control of elastoplastic deformable linear objects through reinforcement learning. In Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021. [Google Scholar]
- Zakaria, M.H.D.; Aranda, M.; Lequièvre, L.; Lengagne, S.; Ramón, J.A.C.; Mezouar, Y. Robotic Control of the Deformation of Soft Linear Objects Using Deep Reinforcement Learning. In Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico, 22–26 August 2022; pp. 1516–1522. [Google Scholar]
- Qu, J.; Mao, B.; Li, Z.; Xu, Y.; Zhou, K.; Cao, X.; Fan, Q.; Xu, M.; Liang, B.; Liu, H.; et al. Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Funct. Mater. 2023, 33, 2306249. [Google Scholar] [CrossRef]
- Qu, J.; Yuan, Q.; Li, Z.; Wang, Z.; Xu, F.; Fan, Q.; Zhang, M.; Qian, X.; Wang, X.; Wang, X.; et al. All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping. Nano Energy 2023, 111, 108387. [Google Scholar] [CrossRef]
- Zhaole, S.; Zhou, H.; Nanbo, L.; Chen, L.; Zhu, J.; Fisher, R.B. A Robust Deformable Linear Object Perception Pipeline in 3D: From Segmentation to Reconstruction. IEEE Robot. Autom. Lett. 2023, 9, 843–850. [Google Scholar] [CrossRef]
- Lv, N.; Liu, J.; Ding, X.; Liu, J.; Lin, H.; Ma, J. Physically based real-time interactive assembly simulation of cable harness. J. Manuf. Syst. 2017, 43, 385–399. [Google Scholar] [CrossRef]
- Servin, M.; Lacoursiere, C. Rigid body cable for virtual environments. IEEE Trans. Vis. Comput. Graph. 2008, 14, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, Q. Real-time inextensible surgical thread simulation. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1019–1035. [Google Scholar] [CrossRef]
- Linn, J.; Dreßler, K. Discrete Cosserat rod models based on the difference geometry of framed curves for interactive simulation of flexible cables. In Math for the Digital Factory; Springer: Berlin/Heidelberg, Germany, 2017; pp. 289–319. [Google Scholar]
- Valentini, P.P.; Pennestrì, E. Modeling elastic beams using dynamic splines. Multibody Syst. Dyn. 2011, 25, 271–284. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, H.; Li, N.; Weggel, D.C.; Wen, G. An efficient FE model of slender members for crash analysis of cable barriers. Eng. Struct. 2013, 52, 240–256. [Google Scholar] [CrossRef]
- Yin, H.; Varava, A.; Kragic, D. Modeling, learning, perception, and control methods for deformable object manipulation. Sci. Robot. 2021, 6, eabd8803. [Google Scholar] [CrossRef]
- Lv, N.; Liu, J.; Xia, H.; Ma, J.; Yang, X. A review of techniques for modeling flexible cables. Comput.-Aided Des. 2020, 122, 102826. [Google Scholar] [CrossRef]
- ElBadrawy, A.A.; Hemayed, E.E. Speeding up cloth simulation by linearizing the bending function of the physical mass-spring model. In Proceedings of the 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, Hangzhou, China, 16–19 May 2011; pp. 101–107. [Google Scholar]
- Patete, P.; Iacono, M.I.; Spadea, M.F.; Trecate, G.; Vergnaghi, D.; Mainardi, L.T.; Baroni, G. A multi-tissue mass-spring model for computer assisted breast surgery. Med. Eng. Phys. 2013, 35, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Loock, A.; Schömer, E.; Stadtwald, I. A virtual environment for interactive assembly simulation: From rigid bodies to deformable cables. In Proceedings of the 5th World Multiconference on Systemics, Cybernetics and Informatics (SCI’01), Orlando, FL, USA, 22–25 July 2001; Volume 3, pp. 325–332. [Google Scholar]
- Rohmer, E.; Singh, S.P.N.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326. [Google Scholar] [CrossRef]
- Koessler, A.; Filella, N.R.; Bouzgarrou, B.C.; Lequièvre, L.; Ramon, J.A.C. An efficient approach to closed-loop shape control of deformable objects using finite element models. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 1637–1643. [Google Scholar]
- Wang, C.; Zhang, Y.; Zhang, X.; Wu, Z.; Zhu, X.; Jin, S.; Tang, T.; Tomizuka, M. Offline-online learning of deformation model for cable manipulation with graph neural networks. IEEE Robot. Autom. Lett. 2022, 7, 5544–5551. [Google Scholar] [CrossRef]
- Zhu, J.; Navarro-Alarcon, D.; Passama, R.; Cherubini, A. Vision-based manipulation of deformable and rigid objects using subspace projections of 2D contours. Robot. Auton. Syst. 2021, 142, 103798. [Google Scholar] [CrossRef]
Time step h | 0.01 s |
Number of points N | 10 |
Cable length L | 0.70 m (UIDeform and BIDeform) |
0.50 m (BMDeform) | |
Cable diameter d | 4.0 mm |
Cable Young’s modulus Y | 100 MPa |
Damping coefficient | 25 Ns/m |
Controller parameters | |
0.5 | |
[0.03 m/s, 0.03 m/s, 0.08 rad, 0.03 m/s, 0.03 m/s, 0.08 rad |
Test Case | UIDeform | BIDeform | ||||
---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |
TC1 | 3.4 | 2.1 | 1.1 | 3.3 | 1.6 | 1.0 |
TC2 | 53.2 | 28.4 | 21.5 | 2.7 | 1.0 | 1.0 |
TC3 | 11.6 | 4.6 | 4.6 | 16.0 | 5.1 | 5.0 |
TC4 | 50.9 | 24.0 | 20.1 | 3.4 | 1.7 | 1.2 |
TC5 | 8.5 | 4.1 | 2.9 | 2.9 | 1.3 | 1.1 |
TC6 | 68.7 | 31.7 | 26.9 | 3.1 | 0.9 | 1.1 |
Test Case | TC1 | TC2 | TC3 | TC4 | TC5 | TC6 |
---|---|---|---|---|---|---|
(mm) | 2.0 | 2.3 | 8.7 | 2.3 | 1.8 | 2.0 |
(mm) | 1.5 | 0.8 | 2.8 | 1.0 | 0.8 | 1.3 |
(mm) | 0.3 | 0.7 | 3.2 | 0.7 | 0.6 | 0.3 |
Method | Robotic System | Task Complexity | Intermediate Profiles | Robot Motion | Data Collection |
---|---|---|---|---|---|
Zhu et al., 2018 [13] | dual–arm | Simple | No | Jacobian–based | Online |
Zhu et al., 2021 [42] | dual–arm | Simple | Yes | Jacobian–based | Online |
Almaghout and Klimchik, 2022 [18] | dual–arm | Simple | Yes | Jacobian–based | – |
Wang et al., 2022 [41] | dual–arm | Complex | No | Data–driven | Online and offline |
Yu et al., 2022 [16] | single– and dual–arm | Complex | No | Data–driven | Online and offline |
The proposed approach | single– and dual–arm | Complex | Yes | Optimization problem | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaghout, K.; Klimchik, A. Manipulation Planning for Cable Shape Control. Robotics 2024, 13, 18. https://doi.org/10.3390/robotics13010018
Almaghout K, Klimchik A. Manipulation Planning for Cable Shape Control. Robotics. 2024; 13(1):18. https://doi.org/10.3390/robotics13010018
Chicago/Turabian StyleAlmaghout, Karam, and Alexandr Klimchik. 2024. "Manipulation Planning for Cable Shape Control" Robotics 13, no. 1: 18. https://doi.org/10.3390/robotics13010018
APA StyleAlmaghout, K., & Klimchik, A. (2024). Manipulation Planning for Cable Shape Control. Robotics, 13(1), 18. https://doi.org/10.3390/robotics13010018