A Survey on Mechanical Solutions for Hybrid Mobile Robots
Abstract
:1. Introduction
2. Classification of Locomotion
2.1. Aquatic Locomotion
2.2. Aerial Locomotion
2.3. Terrestrial Locomotion
2.4. Hybrid Locomotion
- Reconfigurable multimodal robots, when they are characterized by two or more locomotion modes performed by the same mechatronic system. The reconfiguration strategy of these class of robots must be carefully studied to reduce “dead” times, when the robot changes from a configuration to another.
- Non-reconfigurable multimodal robots, when the different locomotion modes are independent from each other. In this case, it is possible to define hybrid motion strategies when both modes are performed together to optimize navigation and performance.
2.5. Technology Readiness
- TRL 1 – basic principles observed
- TRL 2 – technology concept formulated
- TRL 3 – experimental proof of concept
- TRL 4 – technology validated in laboratory
- TRL 5 – technology validated in relevant environment
- TRL 6 – technology demonstrated in relevant environment
- TRL 7 – system prototype demonstration in operational environment
- TRL 8 – system complete and qualified
- TRL 9 – actual system proven in operational environment.
- Level 1 – Hypothetical commercial proposition
- Level 2 – Commercial trial
- Level 3 – Commercial scale up
- Level 4 – Multiple commercial applications
- Level 5 – Market competition driving widespread deployment
- Level 6 – “Bankable” grade asset class.
3. Terrestrial Hybrid Robots
4. Amphibious Hybrid Robots
5. Aerial Hybrid Robots
Case Study: HeritageBot
- Optimal navigation: instead of planning HeritageBot path from one waypoint to the following one by considering a single locomotion mode, an energy cost function can be defined to take into account the energy consumption of the path by using: flight only; walking only; a combination of the two. Thus, an optimal path can be defined as the one with the minimal energy cost. Even if walking has a lower cost overall, an aerial path can be more convenient (or even the only possible way) in case of large obstacles on the way.
- Dynamic balancing: the helices can be used to generate aerodynamic lift to balance the quadruped robot in case of slipping or similar losses of balance (e.g., landslides on the ground where the robot is walking). Moreover, an aerodynamic drag force can be generated to help the robot “walk” on surfaces with high inclination by keeping the feet contacting the ground.
- Improved payload: in case of intervention and sample collection, an aerodynamic lift can be used to increase the payload of the system without overloading the linear actuators of the legs.
6. Discussion
- Main and secondary modes of locomotion: one of the main design trends behind hybrid mobile robot is to have a primary mode of locomotion that is usually more efficient or performing, and a secondary mode that is used only to overcome obstacles. An example of this design is given by wheeled/legged mobile robots.
- Reconfigurable mode of locomotion: many hybrid robots use a single mode of locomotion (e.g., legs, or helices) that works in more than one environment with minimal change. For examples, helices can be used to generate thrust in water, and lift for flying, or legs can swim and walk.
- Independent locomotion modes: robots with two or more independent locomotory systems are usually either designed to use them one at a time. Little research has been done on how multiple modes can interact and collaborate.
- Applications: while the most common designs are usually task-oriented, many bio-inspired robots are developed without a target application, but only to prove the feasibility of new designs (e.g., most of the flapping wings robot). Even if those robots are interesting, the lack of focus limits them to low TRLs.
- Performance index: a general index to represent the performance of the robot, as for example energy consumption and efficiency during different motion modes, is not available. Thus, it is difficult to compare robots with different modes of motion even when they move in similar environments.
7. Conclusions
Funding
Conflicts of Interest
References
- Siciliano, B.; Khatib, O. (Eds.) Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gage, D.W. UGV history 101: A brief history of Unmanned Ground Vehicle (UGV) development efforts. Ummanned Syst. Mag. 1995, 13, 1–9. [Google Scholar]
- Nilsson, N.J. A Mobile Automaton: An Application of Artificial Intelligence Techniques; SRI International: Menlo Park, CA, USA, 1969. [Google Scholar]
- Nilsson, N.J. Shakey the Robot; SRI International: Menlo Park, CA, USA, 1984. [Google Scholar]
- Frank, A.A. Automatic Control Systems for Legged Locomotion; USCEE Report No. 273; University of Southern California: Los Angeles, CA, USA, 1968. [Google Scholar]
- Liston, R.A.; Mosher, R.S. A versatile walking truck. In Proceedings of the Transportation Engineering Conference; ASME-NYAS: Washington, DC, USA, 1968. [Google Scholar]
- Kato, I.; Tsuiki, H. The hydraulically powered biped walking machine with a high carrying capacity. In IV Symposium on External Control of Human Extremities; Yugoslav Committee for Electronics and Automation: Dubrovnik, Croatia, 1972. [Google Scholar]
- Keane, J.F.; Carr, S.S. A brief history of early unmanned aircraft. Johns Hopkins APL Tech. Dig. 2013, 32, 558–571. [Google Scholar]
- Yuh, J. Design and control of autonomous underwater robots: A survey. Auto. Robot. 2000, 8, 7–24. [Google Scholar] [CrossRef]
- Antonelli, G. Underwater Robots; Springer International Publishing: Cham, Switzerland, 2014; Volume 3. [Google Scholar]
- Nussbaum, M.C. Aristotle’s De Motu Animalium: Text with Translation, Commentary, and Interpretive Essays; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Taylor, G.; Triantafyllou, M.S.; Tropea, C. (Eds.) Animal Locomotion; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gordon, M.S.; Blickhan, R.; Dabiri, J.O.; Videler, J.J. Animal Locomotion: Physical Principles and Adaptations; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Biewener, A.; Patek, S. Animal Locomotion; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Yuh, J.; West, M. Underwater robotics. Adv. Robot. 2001, 15, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, G.; Fossen, T.I.; Yoerger, D.R. Underwater Robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 987–1008. [Google Scholar]
- Moore, S.W.; Bohm, H.; Jensen, V.; Johnston, N. Underwater Robotics: Science, Design & Fabrication; Marine Advanced Technology Education (MATE) Center: Monterey, CA, USA, 2010. [Google Scholar]
- Hubbard, J.J.; Fleming, M.; Palmre, V.; Pugal, D.; Kim, K.J.; Leang, K.K. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J. Ocean. Eng. 2013, 39, 540–551. [Google Scholar] [CrossRef]
- Behkam, B.; Sitti, M. Design methodology for biomimetic propulsion of miniature swimming robots. J. Dyn. Syst. Meas. Control. 2006, 128, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Behkam, B.; Sitti, M. Modeling and testing of a biomimetic flagellar propulsion method for microscale biomedical swimming robots. In Proceedings of the IEEE Advanced Intelligent Mechanotronics Conference, Monterey, CA, USA, 24–28 July 2005; pp. 24–28. [Google Scholar]
- Long, J.H.; Koob, T.J.; Irving, K.; Combie, K.; Engel, V.; Livingston, N.; Schumacher, J. Biomimetic evolutionary analysis: Testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots. J. Exp. Biol. 2006, 209, 4732–4746. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Régnier, S.; Sitti, M. Rotating magnetic miniature swimming robots with multiple flexible flagella. IEEE Trans. Robot. 2013, 30, 3–13. [Google Scholar]
- Suzumori, K.; Endo, S.; Kanda, T.; Kato, N.; Suzuki, H. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 4975–4980. [Google Scholar]
- Chu, W.S.; Lee, K.T.; Song, S.H.; Han, M.W.; Lee, J.Y.; Kim, H.S.; Ahn, S.H. Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 2012, 13, 1281–1292. [Google Scholar] [CrossRef]
- Kelasidi, E.; Liljeback, P.; Pettersen, K.Y.; Gravdahl, J.T. Innovation in underwater robots: Biologically inspired swimming snake robots. IEEE Robot. Autom. Mag. 2016, 23, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Yoerger, D.R.; Bradley, A.M.; Walden, B.B.; Cormier, M.H.; Ryan, W.B. Fine-scale seafloor survey in rugged deep-ocean terrain with an autonomous robot. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April 2020; Volume 2, pp. 1787–1792. [Google Scholar]
- Whitcomb, L.; Yoerger, D.R.; Singh, H.; Howland, J. Advances in underwater robot vehicles for deep ocean exploration: Navigation, control, and survey operations. In Robotics Research; Springer: London, UK, 2000; pp. 439–448. [Google Scholar]
- Das, J.; Sukhatme, G.S. A robotic sentinel for benthic sampling along a transect. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 206–213. [Google Scholar]
- Hu, D.L.; Chan, B.; Bush, J.W. The hydrodynamics of water strider locomotion. Nature 2003, 424, 663. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, O.; Wang, H.; Taylor, J.D.; Sitti, M. STRIDE II: a water strider-inspired miniature robot with circular footpads. Int. J. Adv. Rob. Syst. 2014, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Platzer, M.F.; Jones, K.D.; Young, J.; SLai, J.C. Flapping wing aerodynamics: Progress and challenges. AIAA J. 2008, 46, 2136–2149. [Google Scholar] [CrossRef]
- Couceiro, M.S.; Ferreira, N.F.; Machado, J.T. Application of fractional algorithms in the control of a robotic bird. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Zdunich, P.; Bilyk, D.; MacMaster, M.; Loewen, D.; DeLaurier, J.; Kornbluh, R.; Holeman, D. Development and testing of the mentor flapping-wing micro air vehicle. J. Aircr. 2007, 44, 1701–1711. [Google Scholar] [CrossRef]
- Karasek, M. Robotic Hummingbird: Design of a Control Mechanism for A Hovering Flapping Wing Micro Air Vehicle; Universite libre de Bruxelles: Bruxelles, Belgium, 2014. [Google Scholar]
- Gerdes, J.; Holness, A.; Perez-Rosado, A.; Roberts, L.; Greisinger, A.; Barnett, E.; Gupta, S.K. Robo Raven: A flapping-wing air vehicle with highly compliant and independently controlled wings. Soft Robot. 2014, 1, 275–288. [Google Scholar] [CrossRef]
- Perez-Rosado, A.; Gehlhar, R.D.; Nolen, S.; Gupta, S.K.; Bruck, H.A. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles. Smart Mater. Struct. 2015, 24, 065042. [Google Scholar] [CrossRef]
- Keennon, M.; Klingebiel, K.; Won, H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; p. 588. [Google Scholar]
- Bahlman, J.W.; Swartz, S.M.; Breuer, K.S. Design and characterization of a multi-articulated robotic bat wing. Bioinspiration Biomim. 2013, 8, 016009. [Google Scholar] [CrossRef]
- Karpelson, M.; Wei, G.Y.; Wood, R.J. A review of actuation and power electronics options for flapping-wing robotic insects. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 779–786. [Google Scholar]
- Yan, J.; Wood, R.J.; Avadhanula, S.; Sitti, M.; Fearing, R.S. Towards flapping wing control for a micromechanical flying insect. In Proceedings of the Proceedings 2001 ICRA, IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Korea, 21–26 May 2001; Volume 4, pp. 3901–3908. [Google Scholar]
- Deng, X.; Schenato, L.; Wu, W.C.; Sastry, S.S. Flapping flight for biomimetic robotic insects: Part I-system modeling. IEEE Trans. Robot. 2006, 22, 776–788. [Google Scholar] [CrossRef]
- Deng, X.; Schenato, L.; Sastry, S.S. Flapping flight for biomimetic robotic insects: Part II-flight control design. IEEE Trans. Robot. 2006, 22, 789–803. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.S.; Ma, K.Y.; Fearing, R.S. Efficient resonant drive of flapping-wing robots. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2854–2860. [Google Scholar]
- Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): A review of related works. Vis. Eng. 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Dias, J.; Seneviratne, L. A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Syst. 2014, 2, 175–199. [Google Scholar] [CrossRef] [Green Version]
- Demir, K.A.; Cicibas, H.; Arica, N. Unmanned aerial vehicle domain: Areas of research. Def. Sci. J. 2015, 65, 319–329. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shavarani, S.M.; Nejad, M.G.; Rismanchian, F.; Izbirak, G. Application of hierarchical facility location problem for optimization of a drone delivery system: A case study of Amazon prime air in the city of San Francisco. Int. J. Adv. Manuf. Technol. 2018, 95, 3141–3153. [Google Scholar] [CrossRef]
- Bamburry, D. Drones: Designed for product delivery. Des. Manag. Rev. 2015, 26, 40–48. [Google Scholar]
- Murray, C.C.; Chu, A.G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [Google Scholar] [CrossRef]
- Scott, J.; Scott, C. Drone delivery models for healthcare. In Proceedings of the 50th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 4–7 January 2017. [Google Scholar]
- Pankine, A.A.; Aaron, K.M.; Heun, M.K.; Nock, K.T.; Schlaifer, R.S.; Wyszkowski, C.J.; Lorenz, R.D. Directed aerial robot explorers for planetary exploration. Adv. Space Res. 2004, 33, 1825–1830. [Google Scholar] [CrossRef]
- Csonka, P.J.; Waldron, K.J. A brief history of legged robotics. In Technology Developments: The Role of Mechanism and Machine Science and IFToMM; Springer: Dordrecht, The Netherlands, 2011; pp. 59–73. [Google Scholar]
- Lim, H.O.; Takanishi, A. Biped walking robots created at Waseda University: WL and WABIAN family. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2007, 365, 49–64. [Google Scholar] [CrossRef]
- Raibert, M.H. Legged Robots that Balance; MIT Press: Cambridge, UK, 1986. [Google Scholar]
- Hirose, M.; Ogawa, K. Honda humanoid robots development. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 365, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Boston Dynamics. 2019. Available online: https://www.bostondynamics.com/ (accessed on 10 June 2019).
- Kulk, J.; Welsh, J. A low power walk for the NAO robot. In Proceedings of the 2008 Australasian Conference on Robotics & Automation (ACRA-2008), ARAA, Canberra, ACT, Australia, 3–5 December 2008; Kim, J., Mahony, R., Eds.; pp. 1–7. [Google Scholar]
- Metta, G.; Natale, L.; Nori, F.; Sandini, G.; Vernon, D.; Fadiga, L.; Bernardino, A. The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Netw. 2010, 23, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Tsagarakis, N.G.; Caldwell, D.G.; Negrello, F.; Choi, W.; Baccelliere, L.; Loc, V.G.; Natale, L. WALK-MAN: A High-Performance Humanoid Platform for Realistic Environments. J. Field Robot. 2017, 34, 1225–1259. [Google Scholar] [CrossRef]
- Jung, H.W.; Seo, Y.H.; Ryoo, M.S.; Yang, H.S. Affective communication system with multimodality for a humanoid robot, AMI. In Proceedings of the 2004 4th IEEE/RAS International Conference on Humanoid Robots, Santa Monica, CA, USA, 10–12 November 2004; Volume 2, pp. 690–706. [Google Scholar]
- Tellez, R.; Ferro, F.; Garcia, S.; Gomez, E.; Jorge, E.; Mora, D.; Faconti, D. Reem-B: An autonomous lightweight human-size humanoid robot. In Proceedings of the Humanoids 2008—8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 1–3 December 2008; pp. 462–468. [Google Scholar]
- Russo, M.; Cafolla, D.; Ceccarelli, M. Design and Experiments of a Novel Humanoid Robot with Parallel Architectures. Robotics 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Asfour, T.; Regenstein, K.; Azad, P.; Schroder, J.; Bierbaum, A.; Vahrenkamp, N.; Dillmann, R. ARMAR-III: An integrated humanoid platform for sensory-motor control. In Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 4–6 December 2006; pp. 169–175. [Google Scholar]
- Asfour, T.; Schill, J.; Peters, H.; Klas, C.; Bücker, J.; Sander, C.; Bartenbach, V. Armar-4: A 63 dof torque controlled humanoid robot. In Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, USA, 15–17 October 2013; pp. 390–396. [Google Scholar]
- Campion, G.; Chung, W. Wheeled robots. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 391–410. [Google Scholar]
- Muir, P.F.; Neuman, C.P. Kinematic modeling of wheeled mobile robots. J. Robot. Syst. 1987, 4, 281–340. [Google Scholar] [CrossRef]
- Campion, G.; Bastin, G.; D’Andrea-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 462–469. [Google Scholar]
- Dixon, W.E.; Dawson, D.M.; Zergeroglu, E.; Behal, A. Nonlinear Control of Wheeled Mobile Robots; Springer: London, UK, 2001; Volume 175. [Google Scholar]
- Chan, R.P.M.; Stol, K.A.; Halkyard, C.R. Review of modelling and control of two-wheeled robots. Annu. Rev. Control 2013, 37, 89–103. [Google Scholar] [CrossRef]
- Ortigoza, R.S.; Marcelino-Aranda, M.; Ortigoza, G.S.; Guzman, V.M.H.; Molina-Vilchis, M.A.; Saldana-Gonzalez, G.; Olguin-Carbajal, M. Wheeled mobile robots: A review. IEEE Lat. Am. Trans. 2012, 10, 2209–2217. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chen, W.J. Review of tracked mobile robots. Mech. Electr. Eng. Mag. 2007, 12. [Google Scholar]
- Karavaev, Y.L.; Kilin, A.A. The dynamics and control of a spherical robot with an internal omniwheel platform. Regul. Chaotic Dyn. 2015, 20, 134–152. [Google Scholar] [CrossRef]
- Watanabe, K. Control of an omnidirectional mobile robot. In Proceedings of the 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES’98 (Cat. No. 98EX111), Adelaide, Australia, 21–23 April 1998; Volume 1, pp. 51–60. [Google Scholar]
- Ashmore, M.; Barnes, N. Omni-drive robot motion on curved paths: The fastest path between two points is not a straight-line. In Proceedings of the Australian Joint Conference on Artificial Intelligence, Canberra, ACT, Australia, 2–6 December 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 225–236. [Google Scholar]
- Salih, J.E.M.; Rizon, M.; Yaacob, S.; Adom, A.H.; Mamat, M.R. Designing omni-directional mobile robot with mecanum wheel. Am. J. Appl. Sci. 2006, 3, 1831–1835. [Google Scholar]
- Armour, R.H.; Vincent, J.F. Rolling in nature and robotics: A review. J. Bionic Eng. 2006, 3, 195–208. [Google Scholar] [CrossRef]
- Chase, R.; Pandya, A. A review of active mechanical driving principles of spherical robots. Robotics 2012, 1, 3–23. [Google Scholar] [CrossRef]
- Hirose, S.; Yamada, H. Snake-like robots. IEEE Robot. Autom. Mag. 2009, 16, 88–98. [Google Scholar] [CrossRef]
- Hirose, S.; Morishima, A.; Tukagosi, S.; Tsumaki, T.; Monobe, H. Design of practical snake vehicle: Articulated body mobile robot KR-II. In Proceedings of the Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments, Pisa, Italy, 19–22 June 1991; pp. 833–838. [Google Scholar]
- Mori, M.; Hirose, S. Development of active cord mechanism ACM-R3 with agile 3D mobility. In Proceedings of the Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), Maui, HI, USA, 29 October–3 November 2001; Volume 3, pp. 1552–1557. [Google Scholar]
- Hirose, S.; Fukushima, E.F. Snakes and strings: New robotic components for rescue operations. Int. J. Robot. Res. 2004, 23, 341–349. [Google Scholar] [CrossRef]
- Hirose, S.; Mori, M. Biologically inspired snake-like robots. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 22–26 August 2004; pp. 1–7. [Google Scholar]
- Burdick, J.W.; Radford, J.; Chirikjian, G.S. A ‘sidewinding’ locomotion gait for hyper-redundant robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 101–106. [Google Scholar]
- Chirikjian, G.S.; Burdick, J.W. A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 1994, 10, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Chirikjian, G.S.; Burdick, J.W. The kinematics of hyper-redundant robot locomotion. IEEE Trans. Robot. Autom. 1995, 11, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.A.; Walker, I.D. Practical kinematics for real-time implementation of continuum robots. IEEE Trans. Robot. 2006, 22, 1087–1099. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.A.; Walker, I.D. Kinematics for multisection continuum robots. IEEE Trans. Robot. 2006, 22, 43–55. [Google Scholar] [CrossRef]
- Camarillo, D.B.; Milne, C.F.; Carlson, C.R.; Zinn, M.R.; Salisbury, J.K. Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans. Robot. 2008, 24, 1262–1273. [Google Scholar] [CrossRef]
- Webster, R.J., III; Jones, B.A. Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Walker, I.D. Continuous backbone “continuum” robot manipulators. ISRN Robot. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hatton, R.L.; Choset, H. Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction. Auton. Robot. 2010, 28, 271–281. [Google Scholar] [CrossRef]
- Hatton, R.L.; Knepper, R.A.; Choset, H.; Rollinson, D.; Gong, C.; Galceran, E. Snakes on a plan: Toward combining planning and control. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5174–5181. [Google Scholar]
- Penning, R.S.; Jung, J.; Borgstadt, J.A.; Ferrier, N.J.; Zinn, M.R. Towards closed loop control of a continuum robotic manipulator for medical applications. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4822–4827. [Google Scholar]
- Butler, E.J.; Hammond-Oakley, R.; Chawarski, S.; Gosline, A.H.; Codd, P.; Anor, T.; Lock, J. Robotic neuro-endoscope with concentric tube augmentation. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 2941–2946. [Google Scholar]
- Ho, M.; Kim, Y.; Cheng, S.S.; Gullapalli, R.; Desai, J.P. Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot. Int. J. Robot. Res. 2015, 34, 1147–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, F.; Ju, F.; Bai, D.; Wang, Y.; Chen, B. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1932. [Google Scholar] [CrossRef] [PubMed]
- Kamegawa, T.; Yarnasaki, T.; Igarashi, H.; Matsuno, F. Development of the snake-like rescue robot “kohga”. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’ 04 2004, New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 5081–5086. [Google Scholar]
- Granosik, G.; Hansen, M.G.; Borenstein, J. The OmniTread serpentine robot for industrial inspection and surveillance. Ind. Robot Int. J. 2005, 32, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Du, R. Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst. 2013, 10, 209. [Google Scholar] [CrossRef]
- Delimont, I.L.; Magleby, S.P.; Howell, L.L. Evaluating compliant hinge geometries for origami-inspired mechanisms. J. Mech. Robot. 2015, 7, 011009. [Google Scholar] [CrossRef]
- Zhang, K.; Qiu, C.; Dai, J.S. An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 2016, 8, 031010. [Google Scholar] [CrossRef]
- Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S.M.; Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 2018, 3, eaar7555. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, E.W.; Blumenschein, L.H.; Greer, J.D.; Okamura, A.M. A soft robot that navigates its environment through growth. Sci. Robot. 2017, 2, eaan3028. [Google Scholar] [CrossRef] [Green Version]
- Héder, M. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Innov. J. 2017, 22, 1–23. [Google Scholar]
- Smith, J.A.; Sharf, I.; Trentini, M. Bounding gait in a hybrid wheeled-leg robot. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 5750–5755. [Google Scholar]
- Grand, C.; Benamar, F.; Plumet, F.; Bidaud, P. Stability and traction optimization of a reconfigurable wheel-legged robot. Int. J. Robot. Res. 2004, 23, 1041–1058. [Google Scholar] [CrossRef]
- Smith, J.A.; Sharf, I.; Trentini, M. PAW: A hybrid wheeled-leg robot. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, 15-19 May 2006; pp. 4043–4048. [Google Scholar]
- Adachi, H.; Koyachi, N.; Arai, T.; Shimiza, A.; Nogami, Y. Mechanism and control of a leg-wheel hybrid mobile robot. In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No. 99CH36289), Kyongju, Korea, 17–21 October 1999; Volume 3, pp. 1792–1797. [Google Scholar]
- Grand, C.; BenAmar, F.; Plumet, F.; Bidaud, P. Decoupled control of posture and trajectory of the hybrid wheel-legged robot Hylos. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 5111–5116. [Google Scholar]
- Kim, Y.S.; Jung, G.P.; Kim, H.; Cho, K.J.; Chu, C.N. Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels. IEEE Trans. Robot. 2014, 30, 1487–1498. [Google Scholar] [CrossRef]
- Chen, S.C.; Huang, K.J.; Chen, W.H.; Shen, S.Y.; Li, C.H.; Lin, P.C. Quattroped: A leg—Wheel transformable robot. IEEE/ASME Trans. Mechatron. 2013, 19, 730–742. [Google Scholar] [CrossRef]
- Tadakuma, K.; Tadakuma, R.; Maruyama, A.; Rohmer, E.; Nagatani, K.; Yoshida, K.; Kaneko, M. Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3358–3365. [Google Scholar]
- Michaud, F.; Letourneau, D.; Arsenault, M.; Bergeron, Y.; Cadrin, R.; Gagnon, F.; Lepage, P. Multi-modal locomotion robotic platform using leg-track-wheel articulations. Auton. Robot. 2005, 18, 137–156. [Google Scholar] [CrossRef]
- Michaud, F.; Létourneau, D.; Arsenault, M.; Bergeron, Y.; Cadrin, R.; Gagnon, F.; Lapage, P. AZIMUT, a leg-track-wheel robot. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2553–2558. [Google Scholar]
- MorphEx. Available online: http://zentasrobots.com/robot-projects/morphex-mkii/ (accessed on 10 June 2019).
- Thakker, R.; Kamat, A.; Bharambe, S.; Chiddarwar, S.; Bhurchandi, K.M. Rebis-reconfigurable bipedal snake robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 309–314. [Google Scholar]
- Singh, A.; Paigwar, A.; Manchukanti, S.T.; Saroya, M.; Maurya, M.; Chiddarwar, S. Design and implementation of Omni-directional spherical modular snake robot (OSMOS). In Proceedings of the 2017 IEEE International Conference on Mechatronics (ICM), Churchill, Australia, 13–15 February 2017; pp. 79–84. [Google Scholar]
- Yu, S.; Ma, S.; Li, B.; Wang, Y. An amphibious snake-like robot with terrestrial and aquatic gaits. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2960–2961. [Google Scholar]
- Dudek, G.; Giguere, P.; Prahacs, C.; Saunderson, S.; Sattar, J.; Torres-Mendez, L.A.; Zacher, J. Aqua: An amphibious autonomous robot. Computer 2007, 40, 46–53. [Google Scholar] [CrossRef]
- Chen, Y.; Doshi, N.; Goldberg, B.; Wang, H.; Wood, R.J. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat. Commun. 2018, 9, 2495. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, S. A versatile locomotion mechanism for amphibious robots: Eccentric paddle mechanism. Adv. Robot. 2013, 27, 611–625. [Google Scholar] [CrossRef]
- Liang, X.; Xu, M.; Xu, L.; Liu, P.; Ren, X.; Kong, Z.; Zhang, S. The AmphiHex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 3667–3672. [Google Scholar]
- Yu, J.; Ding, R.; Yang, Q.; Tan, M.; Wang, W.; Zhang, J. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron. 2011, 17, 847–856. [Google Scholar] [CrossRef]
- Crespi, A.; Badertscher, A.; Guignard, A.; Ijspeert, A.J. Swimming and crawling with an amphibious snake robot. In Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, 18–22 April 2005; pp. 3024–3028. [Google Scholar]
- Li, M.; Guo, S.; Hirata, H.; Ishihara, H. A roller-skating/walking mode-based amphibious robot. Robot. Comput. Integr. Manuf. 2017, 44, 17–29. [Google Scholar] [CrossRef]
- Daler, L.; Mintchev, S.; Stefanini, C.; Floreano, D. A bioinspired multi-modal flying and walking robot. Bioinspiration Biomim. 2015, 10, 016005. [Google Scholar] [CrossRef] [PubMed]
- Daler, L.; Lecoeur, J.; Hählen, P.B.; Floreano, D. A flying robot with adaptive morphology for multi-modal locomotion. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1361–1366. [Google Scholar]
- Mulgaonkar, Y.; Araki, B.; Koh, J.S.; Guerrero-Bonilla, L.; Aukes, D.M.; Makineni, A.; Kumar, V. The flying monkey: A mesoscale robot that can run, fly, and grasp. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4672–4679. [Google Scholar]
- Pratt, C.J.; Leang, K.K. Dynamic underactuated flying-walking (DUCK) robot. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3267–3274. [Google Scholar]
- Yu, Y.; Ding, X. On hybrid modeling and control of a multi-propeller multifunction aerial robot with flying-walking locomotion. Auton. Robot. 2015, 38, 225–242. [Google Scholar] [CrossRef]
- Lock, R.J.; Vaidyanathan, R.; Burgess, S.C.; Loveless, J. Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, Uria aalge. Bioinspiration Biomim. 2010, 5, 046001. [Google Scholar] [CrossRef] [PubMed]
- Drews, P.L.; Neto, A.A.; Campos, M.F. Hybrid unmanned aerial underwater vehicle: Modeling and simulation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4637–4642. [Google Scholar]
- Guo, Z.; Zhu, Y.; Wang, M.; Li, T.; Zhao, H.; Xu, L.; Ceccarelli, M. System Design and Experimental Analysis of an All-environment Mobile Robot. In IFToMM World Congress on Mechanism and Machine Science; Springer: Cham, Switzerland, 2019; pp. 1969–1978. [Google Scholar]
- Ceccarelli, M.; Cafolla, D.; Carbone, G.; Russo, M.; Cigola, M.; Senatore, L.J.; Supino, S. HeritageBot service robot assisting in cultural heritage. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 440–445. [Google Scholar]
- Fankhauser, P.; Bloesch, M.; Krüsi, P.; Diethelm, R.; Wermelinger, M.; Schneider, T.; Siegwart, R. Collaborative navigation for flying and walking robots. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2859–2866. [Google Scholar]
- Ceccarelli, M.; Cafolla, D.; Russo, M.; Carbone, G. Design and construction of a demonstrative HeritageBot platform. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Torino, Italy, 21–23 June 2017; Springer: Cham, Switzerland, 2017; pp. 355–362. [Google Scholar]
- Ceccarelli, M.; Cafolla, D.; Russo, M.; Carbone, G. Prototype and testing of heritagebot platform for service in cultural heritage. In New Activities for Cultural Heritage; Springer: Cham, Switzerland, 2017; pp. 103–112. [Google Scholar]
- Ceccarelli, M.; Cafolla, D.; Russo, M.; Carbone, G. HeritageBot platform for service in Cultural Heritage frames. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418790692. [Google Scholar] [CrossRef]
- Cafolla, D.; Russo, M.; Ceccarelli, M. Experimental validation of HeritageBot III, a robotic platform for Cultural Heritage. J. Intell. Robot. Syst. 2020, 1–15. [Google Scholar] [CrossRef]
AREAS | TYPES | MODES | TRL | CRI |
---|---|---|---|---|
AQUATIC | Swimming | Fins | 1–6 | - |
Undulatory motion | 1–6 | - | ||
Jet propulsion | 7–9 | - | ||
Helices | 7–9 | 1–2 | ||
Benthic | Legs | 1–3 | - | |
Suction cups | 1–3 | - | ||
Crawling | 1–3 | - | ||
Rolling | 1–3 | - | ||
Surface | Sails | 1–6 | - | |
Fins | 1–6 | - | ||
Helices | 1–6 | 1–2 | ||
Jet propulsion | 1–6 | - | ||
Surface striding | 1–3 | - | ||
AERIAL | Active flying | Insect wings | 1–3 | - |
Bird wings | 1–3 | - | ||
Helices | 7–9 | 3–4 | ||
Jet propulsion | 7–9 | 1–4 | ||
Gliding | Gliding surfaces | 1–3 | - | |
Ballooning | Balloons | 1–3 | - | |
TERRESTRIAL | Walking/running/jumping | Legs | 4–9 | 1–2 |
Sliding | Skates | 1–3 | - | |
Crawling | Peristalsis | 1–4 | - | |
Slithering | 1–4 | - | ||
Climbing | Surface adhesion | 1–3 | - | |
Brachiation | 1–3 | - | ||
Rotation | Wheels | 7–9 | 3–4 | |
Tracks | 7–9 | 3–4 | ||
Rolling | 4–6 | 1–2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, M.; Ceccarelli, M. A Survey on Mechanical Solutions for Hybrid Mobile Robots. Robotics 2020, 9, 32. https://doi.org/10.3390/robotics9020032
Russo M, Ceccarelli M. A Survey on Mechanical Solutions for Hybrid Mobile Robots. Robotics. 2020; 9(2):32. https://doi.org/10.3390/robotics9020032
Chicago/Turabian StyleRusso, Matteo, and Marco Ceccarelli. 2020. "A Survey on Mechanical Solutions for Hybrid Mobile Robots" Robotics 9, no. 2: 32. https://doi.org/10.3390/robotics9020032