Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Base Data and Data Processing
2.3. Experimental Procedure
2.4. Gully Erosion Inventory Mapping
2.5. Gully Erosion Conditioning Factors
2.6. Multi-Collinearity Assessment
2.7. Gully Erosion Modeling
2.7.1. Weight of Evidence Model (WoE)
2.7.2. Machine Learning Models
- (1)
- Random forest (RF);
- (2)
- Gradient boosted fecision trees (GBDT);
- (3)
- Extreme gradient boosting machine (XGBoost);
2.8. Model Validation
3. Results
3.1. Results of the Collinearity among Factors
3.2. Importance of Conditioning Factors to Gully Erosion
3.3. Gully Erosion Susceptibility Mapping (GESM)
3.4. Validation of Models
4. Discussion
4.1. Rationale for Gully Erosion Susceptibility Mapping
4.2. Variable Importance and GESM Model Comparison
4.3. Future Work and Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. CATENA 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Dotterweich, M.; Rodzik, J.; Zgłobicki, W.; Schmitt, A.; Schmidtchen, G.; Bork, H.-R. High resolution gully erosion and sedimentation processes, and land use changes since the Bronze Age and future trajectories in the Kazimierz Dolny area (Nałęczów Plateau, SE-Poland). CATENA 2012, 95, 50–62. [Google Scholar] [CrossRef]
- Chaplot, V. Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology 2013, 186, 1–11. [Google Scholar] [CrossRef]
- Kirkby, M.; Bracken, L. Gully processes and gully dynamics. Earth Surf. Process. Landf. 2009, 34, 1841–1851. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 2017, 298, 118–137. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Chaplot, V.; Coadou le Brozec, E.; Silvera, N.; Valentin, C. Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos. CATENA 2005, 63, 167–184. [Google Scholar] [CrossRef]
- Majhi, A.; Nyssen, J.; Verdoodt, A. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh plain, India. Geomorphology 2021, 375, 107547. [Google Scholar] [CrossRef]
- Dewitte, O.; Daoudi, M.; Bosco, C.; Van Den Eeckhaut, M. Predicting the susceptibility to gully initiation in data-poor regions. Geomorphology 2015, 228, 101–115. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casalí, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Rezaei, K.; Pourghasemi, H.R.; Lee, S.; Yamani, M. GIS-based gully erosion susceptibility mapping: A comparison among three data-driven models and AHP knowledge-based technique. Environ. Earth Sci. 2018, 77, 628. [Google Scholar] [CrossRef]
- Conoscenti, C.; Di Maggio, C.; Rotigliano, E. Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: A test in Southern Sicily. Nat. Hazards 2008, 46, 287–305. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Yamani, M.; Pourghasemi, H.R.; Lombardo, L. Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function-logistic regression algorithm. Land Degrad. Dev. 2018, 29, 4035–4049. [Google Scholar] [CrossRef]
- Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 2011, 56, 881–898. [Google Scholar] [CrossRef]
- Arabameri, A.; Cerda, A.; Tiefenbacher, J.P. Spatial pattern analysis and prediction of gully erosion using novel hybrid model of entropy-weight of evidence. Water 2019, 11, 1129. [Google Scholar] [CrossRef] [Green Version]
- Chowdhuri, I.; Pal, S.C.; Arabameri, A.; Saha, A.; Chakrabortty, R.; Blaschke, T.; Pradhan, B.; Band, S.S. Implementation of artificial intelligence based ensemble models for gully erosion susceptibility assessment. Remote. Sens. 2020, 12, 3620. [Google Scholar] [CrossRef]
- Arabameri, A.; Chandra Pal, S.; Costache, R.; Saha, A.; Rezaie, F.; Seyed Danesh, A.; Pradhan, B.; Lee, S.; Hoang, N.-D. Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. Geomat. Nat. Hazards Risk 2021, 12, 469–498. [Google Scholar] [CrossRef]
- Gayen, A.; Pourghasemi, H.R.; Saha, S.; Keesstra, S.; Bai, S. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci. Total Environ. 2019, 668, 124–138. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Loche, M.; Zhao, X.; Li, Y.; Lombardo, L.; Cerda, A.; Pradhan, B.; Bui, D.T. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 2020, 11, 1609–1620. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; Tien Bui, D. Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India. Sensors 2020, 20, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Cruse, R.M.; Gelder, B.; James, D.; Liu, X. Grid order prediction of ephemeral gully head cut position: Regional scale application. CATENA 2021, 200, 105158. [Google Scholar] [CrossRef]
- Polykretis, C.; Ferentinou, M.; Chalkias, C. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bull. Eng. Geol. Environ. 2015, 74, 27–45. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Arabameri, A.; Cerda, A.; Pradhan, B.; Tiefenbacher, J.P.; Lombardo, L.; Bui, D.T. A methodological comparison of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence. Geomorphology 2020, 359, 107136. [Google Scholar] [CrossRef]
- Meliho, M.; Khattabi, A.; Mhammdi, N. A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Rahmati, O.; Haghizadeh, A.; Pourghasemi, H.R.; Noormohamadi, F. Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Nat. Hazards 2016, 82, 1231–1258. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Mojaddadi Rizeei, H.; Park, H.-J. Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and Revised Universal Soil Loss Equation model. Land Degrad. Dev. 2018, 29, 3440–3455. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Pourghasemi, H.R.; Rezaei, K.; Kerle, N. Spatial modelling of gully erosion using GIS and R programing: A comparison among three data mining algorithms. Appl. Sci. 2018, 8, 1369. [Google Scholar] [CrossRef] [Green Version]
- Shit, P.K.; Bhunia, G.S.; Pourghasemi, H.R. Gully Erosion Susceptibility Mapping Based on Bayesian Weight of Evidence. In Gully Erosion Studies from India and Surrounding Regions; Shit, P.K., Pourghasemi, H.R., Bhunia, G.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 133–146. [Google Scholar]
- Zhu, T.X. Gully and tunnel erosion in the hilly Loess Plateau region, China. Geomorphology 2012, 153, 144–155. [Google Scholar] [CrossRef]
- Petovello, M.G.; Curran, J.T. Simulators and Test Equipment; Springer International Publishing: New York, NY, USA, 2017; pp. 535–558. [Google Scholar]
- Pourghasemi, H.R.; Sadhasivam, N.; Kariminejad, N.; Collins, A.L. Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process. Geosci. Front. 2020, 11, 2207–2219. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Van Oost, K. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma 2018, 330, 65–78. [Google Scholar] [CrossRef]
- Alin, A. Multicollinearity. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 370–374. [Google Scholar] [CrossRef]
- Amiri, M.; Pourghasemi, H.R.; Ghanbarian, G.A.; Afzali, S.F. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 2019, 340, 55–69. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat. Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Kuhnert, P.; Kinsey-Henderson, A.; Bartley, R.; Herr, A. Incorporating uncertainty in gully erosion calculations using the random forest modelling approach. Environmetrics 2009, 21, 493–509. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, G.; Meng, X.; Zhang, Y.; Qiao, L.; Tan, L. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ. Earth Sci. 2017, 76, 313. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R. News 2002, 2, 18–22. [Google Scholar]
- He, Q.; Jiang, Z.; Wang, M.; Liu, K. Landslide and wildfire susceptibility assessment in southeast asia using ensemble machine learning methods. Remote. Sens. 2021, 13, 1572. [Google Scholar] [CrossRef]
- Song, Y.; Niu, R.; Shiluo, X.; Ye, R.; Peng, L.; Guo, T.; Li, S.; Chen, T. Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the Three Gorges Reservoir Area (China). ISPRS Int. J. Geo-Inf. 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17August 2016; pp. 785–794. [Google Scholar]
- Cui, Y.; Cai, M.; Stanley, H.E. Comparative Analysis and Classification of Cassette Exons and Constitutive Exons. BioMed Res. Int. 2017, 2017, 7323508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Dev, V.A.; Eden, M.R. Formation lithology classification using scalable gradient boosted decision trees. Comput. Chem. Eng. 2019, 128, 392–404. [Google Scholar] [CrossRef]
- Can, R.; Kocaman, S.; Gokceoglu, C. A Comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk Dam, Turkey. Appl. Sci. 2021, 11, 4993. [Google Scholar] [CrossRef]
- Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B.B. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [Google Scholar] [CrossRef]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Ding, H.; Liu, K.; Chen, X.; Xiong, L.; Tang, G.; Qiu, F.; Strobl, J. Optimized segmentation based on the weighted aggregation method for loess bank gully mapping. Remote Sens. 2020, 12, 793. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Yang, W.; Fu, J.; Li, Z. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Sci. Total Environ. 2021, 773, 145514. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. CATENA 2005, 63, 154–166. [Google Scholar] [CrossRef]
- Dai, W.; Yang, X.; Na, J.; Li, J.; Brus, D.; Xiong, L.; Tang, G.; Huang, X. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas. CATENA 2019, 177, 114–125. [Google Scholar] [CrossRef]
- Yang, X.; Li, M.; Na, J.; Liu, K. Gully boundary extraction based on multidirectional hill-shading from high-resolution DEMs. Trans. GIS 2017, 21, 1204–1216. [Google Scholar] [CrossRef]
- Lei, X.; Chen, W.; Avand, M.; Janizadeh, S.; Kariminejad, N.; Shahabi, H.; Costache, R.-D.; Shahabi, H.; Shirzadi, A.; Mosavi, A. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote. Sens. 2020, 12, 2478. [Google Scholar] [CrossRef]
- Azedou, A.; Lahssini, S.; Khattabi, A.; Meliho, M.; Rifai, N. A Methodological comparison of three models for gully erosion susceptibility mapping in the rural municipality of El Faid (Morocco). Sustainability 2021, 13, 682. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021, 31, 456–476. [Google Scholar] [CrossRef]
- Arabameri, A.; Yamani, M.; Pradhan, B.; Melesse, A.; Shirani, K.; Tien Bui, D. Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Sci. Total Environ. 2019, 688, 903–916. [Google Scholar] [CrossRef]
- Avand, M.; Janizadeh, S.; Naghibi, S.; Pourghasemi, H.; Bozchaloei, S.; Blaschke, T. A Comparative assessment of random forest and k- nearest neighbor classifiers for gully erosion susceptibility mapping. Water 2019, 11, 2076. [Google Scholar] [CrossRef] [Green Version]
- Bui, D.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Omidvar, E.; Pham, B.; Talebpoor, D.; Khaledian, h.; Pradhan, B.; Panahi, M.; et al. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 2019, 19, 2444. [Google Scholar] [CrossRef] [Green Version]
- Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 2021, 1–18. [Google Scholar] [CrossRef]
- Barzegar, R.; Razzagh, S.; Quilty, J.; Adamowski, J.; Kheyrollah Pour, H.; Booij, M.J. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. J. Hydrol. 2021, 598, 126370. [Google Scholar] [CrossRef]
- Bigdeli, B.; Pahlavani, P.; Amirkolaee, H.A. An ensemble deep learning method as data fusion system for remote sensing multisensor classification. Appl. Soft Comput. 2021, 110, 107563. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Band, S.; Janizadeh, S.; Pal, S.; Saha, A.; Chakrabortty, R.; Shokri, M.; Mosavi, A. Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors 2020, 20, 5609. [Google Scholar] [CrossRef] [PubMed]
Factors | Collinearity Statistics | |
---|---|---|
Tolerance | VIF | |
LS | 0.774 | 1.291 |
SPI | 0.122 | 8.175 |
FVC | 0.959 | 1.043 |
TWI | 0.113 | 8.845 |
Slope | 0.149 | 6.721 |
Altitude | 0.817 | 1.224 |
Curvature | 0.950 | 1.052 |
Land use | 0.999 | 1.001 |
Slope aspect | 0.994 | 1.006 |
Catchment area | 0.861 | 1.162 |
Drainage Density | 0.495 | 2.022 |
Distance from road | 0.959 | 1.043 |
Distance from stream | 0.556 | 1.799 |
Terrace | 2.947 × 10−5 | 33,933.183 |
Factors | Class | Pixels of Gullies | Pixels of Non-Gullies | Weight |
---|---|---|---|---|
Altitude (m) | ≤965 | 15,153 | 16,717 | 23.75 |
965–1005 | 62,363 | 42,915 | 126.77 | |
1005–1035 | 11,9581 | 80,014 | 195.9 | |
1035–1060 | 80,648 | 140,839 | −54.27 | |
1060–1085 | 35,785 | 126,183 | −171.61 | |
>1085 | 19,174 | 69,438 | −121.74 | |
Slope gradient (Degree) | ≤10 | 4023 | 71,504 | −163.41 |
10–20 | 12,942 | 105,650 | −204.33 | |
20–30 | 48,335 | 181,852 | −230.25 | |
30–40 | 99,720 | 80,132 | 140.59 | |
40–50 | 71,945 | 22,331 | 215.64 | |
50–60 | 60,488 | 9920 | 212.07 | |
>60 | 35,251 | 4717 | 157.9 | |
Slope Aspect | Flat | 4 | 4 | 0.51 |
N | 49,893 | 50,199 | 60.18 | |
NE | 42,121 | 73,381 | −35.19 | |
E | 32,647 | 56,522 | −29.33 | |
SE | 29,705 | 36,409 | 20.82 | |
S | 36,443 | 41,793 | 32.78 | |
SW | 40,203 | 86,457 | −74.5 | |
W | 49,664 | 74,902 | −10 | |
NW | 52,024 | 56,439 | 49.54 | |
Curvature | <0 | 184,226 | 226,915 | 70.82 |
0 | 69 | 140 | −2.37 | |
>0 | 148,409 | 249,051 | −71.63 | |
TWI | ≤1.2 | 132,891 | 106,262 | 172.42 |
1.2–3.2 | 123,273 | 200,140 | −46.74 | |
3.2–5.9 | 56,640 | 147,244 | −143.14 | |
>5.9 | 19,900 | 22,460 | 25.16 | |
FVC (%) | ≤17 | 45,972 | 101,189 | −86.05 |
17–30 | 74,327 | 144,282 | −81.1 | |
30–43 | 82,280 | 110,479 | 16.17 | |
43–58 | 76,711 | 69,030 | 99.21 | |
58–78 | 39,748 | 34,638 | 71.42 | |
>78 | 13,666 | 16,488 | 15.08 | |
Distance from stream (m) | ≤50 | 77,361 | 28,664 | 213.12 |
50–110 | 94,660 | 117,411 | 38.95 | |
110–180 | 67,822 | 160,919 | −134.18 | |
180–250 | 59,873 | 100,470 | −35.06 | |
>250 | 32,998 | 68,642 | −60.38 | |
Distance from road (m) | ≤70 | 50,506 | 83,979 | −29.62 |
70–145 | 65,438 | 119,151 | −57.53 | |
145–220 | 75,896 | 95,188 | 31.08 | |
220–295 | 55,049 | 66,705 | 31.75 | |
295–385 | 42,617 | 59,307 | 4.75 | |
385–485 | 24,199 | 25,874 | 33.84 | |
>485 | 18,999 | 25,902 | 5.24 | |
LS | ≤2 | 91,087 | 207,723 | −153.74 |
2–10 | 150,466 | 201,008 | 27.82 | |
10–40 | 64,200 | 58,138 | 87.93 | |
40–100 | 11,620 | 6722 | 59.94 | |
>100 | 15,329 | 2515 | 102.13 | |
Catchment area (m2) | 0 | 48,363 | 78,496 | −24.05 |
0–25 | 216,936 | 313,572 | −6.51 | |
25–75 | 33,156 | 54,645 | −21.69 | |
75–175 | 11,114 | 15,509 | 2.07 | |
175–675 | 8925 | 8881 | 24.56 | |
>675 | 14,210 | 5003 | 86.61 | |
Land use | Grassland | 320,239 | 253,392 | 325.78 |
Agricultural land | 811 | 179,256 | −156.27 | |
Built up area | 0 | 6688 | −8.46 | |
Fragmented forest | 11,647 | 32,654 | −64.39 | |
other | 8 | 1241 | −13.22 | |
Water bodies | 0 | 2856 | −7.6 | |
SPI | ≤−0.67 | 8502 | 79,674 | −175.51 |
−0.67–1.06 | 84,835 | 160,493 | −81.11 | |
1.06–2.53 | 132,541 | 153,870 | 71.42 | |
2.53–4.83 | 82,117 | 73,336 | 104.98 | |
>4.83 | 24,709 | 8733 | 115.37 | |
Drainage Density (km/km2) | 0 | 85,897 | 13,4101 | −23.93 |
0–1.7 | 75,135 | 123,021 | −34.22 | |
1.7–3.45 | 83,145 | 114,176 | 10.61 | |
>3.45 | 88,537 | 104,808 | 48.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Wang, C.; Pang, G.; Long, Y.; Wang, L.; Cruse, R.M.; Yang, Q. Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models. ISPRS Int. J. Geo-Inf. 2021, 10, 680. https://doi.org/10.3390/ijgi10100680
Yang A, Wang C, Pang G, Long Y, Wang L, Cruse RM, Yang Q. Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models. ISPRS International Journal of Geo-Information. 2021; 10(10):680. https://doi.org/10.3390/ijgi10100680
Chicago/Turabian StyleYang, Annan, Chunmei Wang, Guowei Pang, Yongqing Long, Lei Wang, Richard M. Cruse, and Qinke Yang. 2021. "Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models" ISPRS International Journal of Geo-Information 10, no. 10: 680. https://doi.org/10.3390/ijgi10100680
APA StyleYang, A., Wang, C., Pang, G., Long, Y., Wang, L., Cruse, R. M., & Yang, Q. (2021). Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models. ISPRS International Journal of Geo-Information, 10(10), 680. https://doi.org/10.3390/ijgi10100680