Crisis Map Design Considering Map Cognition
Abstract
:1. Introduction
2. Related Research
2.1. Crisis Mapping
2.2. Spatial Cognition
2.3. Visiual Attention
3. Stressors in Crisis Map Cognition
3.1. Relationship between Stress and Cognition
3.2. Stressors
3.3. Cognitive Fit in Spatial Information Supply–Demand Matching
4. Crisis Map Visual Cognition
4.1. Crisis Map Visual Cognition Process
4.1.1. Visual Perception
4.1.2. Visual Information Processing
4.1.3. Output of Cognition
5. Crisis Map Design Principles and Method
5.1. Perceptual Template Model
5.2. Crisis Map Design Principles Based on PTM
5.2.1. Relevance of Map Contents
- Task relevance
- Spatial relevance
5.2.2. Saliency of Relevant Map Contents
5.2.3. Appropriate Map Graphics
5.3. Crisis Map Design Method
5.3.1. Base Map
5.3.2. Thematic Information Visual Layer
6. Crisis Map Design and Evaluation
6.1. Crisis Map Design Case
6.2. Evaluation of the Map
6.2.1. Model Based Evaluation
6.2.2. Empirical Evaluation: The Reaction Time Experiment
- Participants
- Experimental materials
- Procedure
- Results
- (1)
- Compared with group A, groups B and C spent less time, because the Figure 4a map tested by group A did not filter the irrelevant contents, whereas the maps tested by group B (t(59) = 16.22, p < 0.001) and group C (t(59) = 18.83, p < 0.001) filtered the irrelevant contents. The reduction of distractors in the Figure 4b, c maps significantly improved the performance of the participants.
- (2)
- Compared with group B, group C (t(59) = 10.61, p < 0.001) took less time. Although the Figure 4b map filtered irrelevant contents, the geographic objects with high relevance had the same visual saliency with other objects, creating little difference between all cartographic objects on the map. The salient design provided the best performance in group C.
- (3)
- The fact that group C spent the least time and had the highest accuracy implied the effectiveness and feasibility of our map design principles and methods.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Participants Number | Reaction Time of Searching Visual Targets (ms) | ||
---|---|---|---|
Fire Brigade Station | Route | Accident Site | |
1 | 1241 | 1316 | 1126 |
2 | 1239 | 1208 | 1266 |
3 | 1237 | 1341 | 1270 |
4 | 978 | 1125 | 1021 |
5 | 1297 | 1224 | 1084 |
6 | 1313 | 954 | 1274 |
7 | 1124 | 1213 | 1299 |
8 | 1231 | 1279 | 1219 |
9 | 1385 | 1399 | 1301 |
10 | 979 | 1246 | 1098 |
11 | 1293 | 1141 | 1222 |
12 | 1310 | 1421 | 1277 |
13 | 1115 | 1355 | 1220 |
14 | 1296 | 1287 | 1295 |
15 | 1430 | 1424 | 1223 |
16 | 2145 | 2012 | 1789 |
17 | 1281 | 1225 | 1282 |
18 | 946 | 959 | 1426 |
19 | 1311 | 1311 | 1303 |
20 | 989 | 1160 | 1025 |
Participants Number | Reaction Time of Searching Visual Targets (ms) | ||
---|---|---|---|
Fire Brigade Station | Route | Accident Site | |
1 | 729 | 853 | 733 |
2 | 828 | 728 | 791 |
3 | 870 | 722 | 736 |
4 | 798 | 920 | 770 |
5 | 762 | 901 | 850 |
6 | 869 | 753 | 747 |
7 | 842 | 844 | 902 |
8 | 737 | 728 | 903 |
9 | 770 | 877 | 805 |
10 | 774 | 844 | 784 |
11 | 858 | 740 | 823 |
12 | 783 | 885 | 799 |
13 | 706 | 756 | 710 |
14 | 846 | 728 | 829 |
15 | 821 | 758 | 776 |
16 | 835 | 837 | 752 |
17 | 842 | 884 | 895 |
18 | 780 | 856 | 818 |
19 | 807 | 709 | 829 |
20 | 843 | 977 | 828 |
Participants Number | Reaction Time of Searching Visual Targets (ms) | ||
---|---|---|---|
Fire Brigade Station | Route | Accident Site | |
1 | 661 | 755 | 758 |
2 | 624 | 652 | 509 |
3 | 756 | 532 | 723 |
4 | 693 | 687 | 687 |
5 | 804 | 698 | 783 |
6 | 637 | 637 | 424 |
7 | 633 | 689 | 451 |
8 | 534 | 654 | 690 |
9 | 603 | 699 | 671 |
10 | 651 | 620 | 678 |
11 | 740 | 734 | 810 |
12 | 783 | 816 | 804 |
13 | 549 | 731 | 640 |
14 | 558 | 550 | 737 |
15 | 784 | 693 | 753 |
16 | 711 | 606 | 520 |
17 | 654 | 746 | 762 |
18 | 815 | 673 | 709 |
19 | 617 | 665 | 699 |
20 | 693 | 763 | 772 |
References
- Raubal, M.; Panov, I. A Formal Model for Mobile Map Adaptation. In Location Based Services and TeleCartography II; Gartner, G., Rehrl, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 11–34. [Google Scholar]
- Divjak, A.K.; Apo, A.; Pribievi, B. Cartographic Symbology for Crisis Mapping: A Comparative Study. ISPRS Int. J. Geo Inf. 2020, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Dymon, U.J. An analysis of emergency map symbology. Int. J. Emerg. Manag. 2003, 1, 227–237. [Google Scholar] [CrossRef]
- Kuveždić Divjak, A.; Lapaine, M. Crisis Maps—Observed Shortcomings and Recommendations for Improvement. ISPRS Int. J. Geo Inf. 2018, 7, 436. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.M.; Lindsay, J.M.; Leonard Graham, S. More Than Meets the Eye: Volcanic Hazard Map Design and Visual Communication. In Advs in Volcanology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Shirish, R. Spatial data to complement the use of space-based information for disaster management. In Geoinformation for Disaster and Risk Management, Examples and Best Practices; Bandrova, T., Zlatanova, S., Konecny, M., Eds.; Joint Board of Geospatial Information Societies (JB GIS) and United Nations Office for Outer Space Affairs (UNOOSA): Copenhagen, Denmark, 2010; pp. 19–24. ISBN 978-87-90907-88. [Google Scholar]
- Robinson, A.C.; Pezanowski, S.; Troedson, S.; Bianchetti, R.; Blanford, J.; Stevens, J.; Guidero, E.; Roth, R.E.; MacEachren, A.M. Symbol Store: Sharing map symbols for emergency management. Cartogr. Geogr. Inf. Sci. 2013, 40, 415–426. [Google Scholar] [CrossRef]
- Stachoň, Z.; Šašinka, Č.; Talhofer, V. Perceptions of Various Cartographic Representations Under Specific Conditions. In Geographic Information and Cartography for Risk and Crisis Management; Konecny, M., Zlatanova, S., Bandrova, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 349–360. ISBN 978-3-642-03441-1. [Google Scholar]
- Bruijn, J.D.; Moel, H.D.; Jongman, B.; Wagemaker, J.; Aerts, J.C.J.H. TAGGS: Grouping Tweets to Improve Global Geoparsing for Disaster Response. J. Geovis. Spat. Anal. 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Cheong, L.; Kinkeldey, C.; Burfurd, I.; Bleisch, S.; Duckham, M. Evaluating the impact of visualization of risk upon emergency route-planning. Int. J. Geogr. Inf. Sci. 2019, 34, 1022–1050. [Google Scholar] [CrossRef]
- Leonard, G.S.; Stewart, C.; Wilson, T.M.; Procter, J.N.; Scott, B.J.; Keys, H.J.; Jolly, G.E.; Wardman, J.B.; Cronin, S.J.; Mcbride, S.K. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 tongariro eruption crisis, New Zealand. J. Volcanol. Geotherm. Res. 2014, 286, 208–232. [Google Scholar] [CrossRef]
- Hu, Y.; Xing, X.; Ma, W.Y.; Chia, L.T.; Rajan, D. Salient Region Detection Using Weighted Feature Maps Based on the Human Visual Attention Model. In Advances in Multimedia Information, Proceedings of the PCM 2004, 5th Pacific Rim Conference on Multimedia, Tokyo, Japan, 30 November–3 December 2004; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Liu, S.B.; Palen, L. The New Cartographers: Crisis Map Mashups and the Emergence of Neogeographic Practice. Cartogr. Geogr. Inf. Sci. 2010, 37, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Dymon, U.J. The role of emergency mapping in disaster response. Columbia Law Rev. 1990, 3, 204–206. [Google Scholar]
- Sun, Y.; Du, D.; Zhou, Y. A Pattern-Plate-Based Technique for Thematic Mapping. Geomat. Inf. Sci. Wuhan Univ. 1998, 23, 171–174. [Google Scholar]
- Xu, L. The Design and Production of Emergency Thematic Map Based on Template Technology. Master’s Thesis, PLA Information Engineering University, Zhengzhou, China, 2012. [Google Scholar]
- Qian, L. Research on Emergency Map Rapid Mapping Method Based on Parametric Template. Master’s Thesis, PLA Information Engineering University, Zhengzhou, China, 2015. [Google Scholar]
- Zheng, S.; Li, Y.; Fang, X.; Qian, L. Emergency Thematic Map Design Based on the Eye Tracking Experiments and Template Technologies. J. Inf. Eng. Univ. 2016, 17, 106–111. [Google Scholar]
- Norheim-Hagtun, I.; Meier, P. Crowdsourcing for Crisis Mapping in Haiti. Innov. Technol. Gov. Glob. 2010, 5, 81–89. [Google Scholar] [CrossRef]
- Roche, S.; Propeck-Zimmermann, E.; Mericskay, B. GeoWeb and crisis management: Issues and perspectives of volunteered geographic information. Geojournal 2013, 78, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Middleton, S.E.; Middleton, L.; Modafferi, S. Real-time crisis mapping of natural disasters using social media. IEEE Intell. Syst. 2014, 29, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.E. Social media in disaster risk reduction and crisis management. Sci. Eng. Ethics 2014, 20, 717–733. [Google Scholar] [CrossRef]
- Boccardo, P. New perspectives in emergency mapping. Eur. J. Remote Sens. 2013, 46, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Voigt, S.; Giulio-Tonolo, F.; Lyons, J.; Kučera, J.; Jones, B.; Schneiderhan, T.; Platzeck, G.; Kaku, K.; Hazarika, M.K.; Czaran, L.; et al. Global trends in satellite-based emergency mapping. Science 2016, 353, 247–252. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.; Liao, A.; Zhu, W. Photomap producing for wenchuan earthquake disaster emergency. J. Remote Sens. 2009, 13, 162–168. [Google Scholar]
- Kostelnick, J.C.; Hoeniges, L.C. Map Symbols for Crisis Mapping: Challenges and Prospects. Cartogr. J. 2018, 56, 59–72. [Google Scholar] [CrossRef]
- Jia, Y. Research on the Design of Public Safety Incident Emergency Symbol. Master’s Thesis, PLA Information Engineering University, Zhengzhou, China, 2010. [Google Scholar]
- Cao, L.; Liu, X. Designing and implement of icons and characters for the special topics of earthquake emergency rescues. Earthq. Res. Sichuan 2010, 2, 45–47. [Google Scholar]
- Li, X.; Li, Z.; Huang, M.; Dai, B. A preliminary research on symbol for earthquake disaster situation. J. Nat. Disasters 2010, 19, 147–154. [Google Scholar]
- Xu, J.; Xu, X.; Nie, G.; Hu, C. Earthquake emergency situation plotting technology based on GIS. Geomat. Inf. Science Wuhan Univ. 2011, 36, 66–70. [Google Scholar]
- Gao, J. Cartographic tetrahedron: Explanation of cartography in the digital era. Acta Geod. Cartogr. 2004, 33, 6–11. [Google Scholar]
- Yu, D. Design Theory, Method and Application of Thematic Atlas. Ph.D. Thesis, Wuhan Universiy, Wuhan, China, 2011. [Google Scholar]
- Zhang, B.; Zhu, J.; Wang, J. Research on Geo-spatial Cognitive Procession on Maps. J. Henan Univ. 2007, 37, 486–491. [Google Scholar]
- Chen, Y. Spatial Cognition Research on Electronic Maps. Prog. Geogr. 2001, 20 (Suppl. 1), 63–68. [Google Scholar]
- Zheng, S. Research on Personalized Map Cognition Mechanism. Acta Geod. Cartogr. 2016, 45, 1008. [Google Scholar]
- Du, P.; Liu, T.; Li, D.; Yang, X. Rapid mapping of emergency scenario and cartographic information transmission. Acta Geod. Cartogr. 2019, 48, 747–755. [Google Scholar]
- Yixuan, Z.; Xueyan, C.; Lei, Z.; Qin, T. How does gender affect indoor wayfinding under time pressure? Cartogr. Geogr. Inf. Sci. 2020, 47, 367–380. [Google Scholar]
- Jing, L.; Lijun, C.; Nan, L. Assessing the influence of repeated exposures and mental stress on human wayfinding performance in indoor environments using virtual reality technology. Adv. Eng. Inform. 2019, 39, 53–61. [Google Scholar]
- Hammond, K.R. Judgments Under Stress; Oxford University Press: New York, NY, USA, 2021. [Google Scholar]
- Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.E. Attention on Maps. Cartogr. Perspect. 2005, 52, 28–57. [Google Scholar] [CrossRef]
- Fabrikant, S.I.; Hespanha, S.R.; Hegarty, M. Cognitively Inspired and Perceptually Salient Graphic Displays for Efficient Spatial Inference Making. Ann. Assoc. Am. Geogr. 2010, 100, 13–29. [Google Scholar] [CrossRef]
- Hegarty, M.; Canham, M.S.; Fabrikant, S.I. Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. J. Exp. Psychol. 2010, 36, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Swienty, O.; Reichenbacher, T.; Reppermund, S.; Zihl, J. The Role of Relevance and Cognition in Attention-guiding Geovisualisation. Cartogr. J. 2008, 45, 227–238. [Google Scholar] [CrossRef]
- Hana, S.; Jaromir, K. Comparative Research of Visual Interpretation of Aerial Images and Topographic Maps for Unskilled Users: Searching for Objects Important for Decision-Making in Crisis Situations. ISPRS Int. J. Geo Inf. 2017, 6, 231. [Google Scholar]
- Angelidis, A.; Solis, E.; Lautenbach, F.; Willem, V.D.D.; Putman, P. I’m going to fail! Acute cognitive performance anxiety increases threat-interference and impairs WM performance. PLoS ONE 2019, 14, e0210824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstein-bercovitz, H. Does stress enhance or impair selective attention? the effects of stress and perceptual load on negative priming. Anxiety Stress Coping 2003, 16, 345–357. [Google Scholar] [CrossRef]
- Rick, L.B.; Robert, E.L. The Cognitive Load of Geographic Information. Prof. Geogr. 2006, 58, 209–220. [Google Scholar]
- Sweller, J. Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 1994, 4, 295–312. [Google Scholar] [CrossRef]
- Kristien, O.; Philippe, D.M.; Veerle, F.; Eva, V.A.; Frank, W. Interpreting maps through the eyes of expert and novice users. Int. J. Geogr. Inf. Sci. 2012, 26, 1773–1788. [Google Scholar]
- Akella, M.K. First Responders and Crisis Map Symbols: Clarifying Communication. Am. Cartogr. 2009, 36, 19–28. [Google Scholar] [CrossRef]
- The General Office of the NPC Standing Committee. Emergency Response Law of the People’s Republic of China; People’s Publishing House: Beijing, China, 2008. [Google Scholar]
- Identification of Major Hazard Installations for Hazardous Chemicals. Available online: http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=E976F49B263D7579CCABD419B1E40225 (accessed on 15 May 2021).
- Šašinka, Č.; Zdeněk, S.; Petr, K.; Tamm, S.; Matas, A.; Kukaňová, M. The Impact of Global/Local Bias on Task-Solving in Map-Related Tasks Employing Extrinsic and Intrinsic Visualization of Risk Uncertainty Maps. Cartogr. J. 2019, 56, 175–191. [Google Scholar] [CrossRef]
- Lokka, I.; Cöltekin, A. Simulating Navigation with Virtual 3D Geovisualization—A Focus on Memory Related Factors. In ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XLI-B2); Halounová, L., Ed.; ISPRS: Prague, Czech Republic, 2016; pp. 671–673. [Google Scholar]
- Sharit, J.; Hernández, M.A.; Czaja, S.J.; Pirolli, P. Investigating the Roles of Knowledge and Cognitive Abilities in Older Adult Information Seeking on the Web. ACM Trans. Comput. Hum. Interact. 2008, 15, 3–17. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Rettinger, D.A.; Shah, P.; Hegarty, M. How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J. Exp. Psychol. Gen. 2001, 130, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Matzen, L.E.; Haass, M.J.; Mcnamara, L.A.; Stevens-Adams, S.M.; Mcmichael, S.N. Effects of professional visual search experience on domain-general and domain-specific visual cognition. In Proceedings of the International Conference on Augmented Cognition, Los Angeles, CA, USA, 2–7 August 2015. [Google Scholar]
- Ke, Q.; Wang, X. Research on the integration of cognitive style and information search behavior. Inf. Stud. Theory Appl. 2011, 34, 35–39. [Google Scholar]
- Opach, T.; Popelka, S.; Dolezalova, J.; Rød, J.K. Star and polyline glyphs in a grid plot and on a map display: Which perform better? Cartogr. Geogr. Inf. Sci. 2017, 2, 400–419. [Google Scholar] [CrossRef]
- Huang, H. Research on Multi-Scale Spatial Data Model Based on Ontology and Its Consistency; Science Press: Beijing, China, 2017. [Google Scholar]
- Teets, J.M.; Tegarden, D.P.; Russell, R.S. Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data. IEEE Trans. Vis. Comput. Graph. 2010, 16, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Konecny, M.; Friedmannova, L.; Staněk, K. An adaptive cartographic visualization for support of the crisis management. In CaGIS Publications Autocarto; CaGIS: Vancouver, WA, USA, 2006; pp. 100–105. [Google Scholar]
- Liang, Y.; Liu, H.Z. Study of image retrieval based on vision attention mechanism. J. Beijing Union Univ. 2010, 24, 30–35. [Google Scholar]
- Yantis, S.; Jonides, J. Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Maunsell, J.H.; Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 2006, 29, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Swienty, O.; Zhang, M.; Reichenbacher, T.; Meng, L. Establishing a neurocognition-based taxonomy of graphical variables for attention-guiding geovisualisation. Proceedings of SPIE-Geoinformatics 6751, Nanjing, China, 25–27 May 2007; p. 675109. [Google Scholar]
- Lu, Z.L.; Dosher, B.A. External noise distinguishes attention mechanisms. Vis. Res. 1998, 38, 1183–1198. [Google Scholar] [CrossRef] [Green Version]
- Yang, T. Spatial and Feature-Based Attention in Visual Processing. Adv. Psychol. 2013, 3, 221–226. [Google Scholar]
- Chesneau, E. A model for the automatic improvement of colour contrasts in maps: Application to risk maps. Int. J. Geogr. Inf. Sci. 2011, 25, 89–111. [Google Scholar] [CrossRef]
- Li, W.; Wu, H. Fractal Attenuation Analysis of Cartographic Object’s Self-similarity on Cartographic Generalization. Geomat. Inf. Sci. Wuhan Univ. 2005, 30, 309–312. [Google Scholar]
- Dong, W.; Liao, H.; Zhan, Z.; Liu, B.; Wang, S.; Yang, T. New research progress of eye tracking-based map cognition in cartography since 2008. Acta Geogr. Sin. 2019, 74, 599–614. [Google Scholar]
- Lu, Z.L.; Dosher, B.A. Spatial attention: Different mechanisms for central and peripheral temporal precues? J. Exp. Psychology Hum. Percept. Perform. 2000, 26, 1534–1548. [Google Scholar] [CrossRef]
- Paj, R. New Map Graphics of Topographic Maps of the Republic of Croatia. Kartogr. Geoinformacije 2008, 1, 1. [Google Scholar]
- Spiess, A.; Baumgartner, U.; Arn, S. Topographic Maps—Map Graphic and Generalisation; Cartographic Publication Series No. 17; Swiss Society of Cartography: Zurich, Switzerland, 2002. [Google Scholar]
- Frangeö, S. Map Graphics in Digital Cartography. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 1998. (In Croatian). [Google Scholar]
- Swienty, O.; Wu, H.; Zhu, Q.; Zhang, M.; Reichenbacher, T. Attention guiding visualization of geospatial information. In Proceedings of the Geoinformatics 2006: Geospatial Information Technology, Wuhan, China, 28 October 2006; p. 642101. [Google Scholar]
- Long, Y.; Wen, Y.; Sheng, Y. Electronic Cartography; Science Press: Beijing, China, 2006. [Google Scholar]
- Li, W.; Qian, M. Revision of the state-trait anxiety inventory with sample of Chinese college students. Acta Sci. Nat. Univ. Pekin. 1995, 31, 108–114. [Google Scholar]
- Nichols, A.L.; Maner, J.K. The Good-Subject Effect: Investigating Participant Demand Characteristics. J. Gen. Psychol. 2008, 135, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Orne, M.T. On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. Am. Psychol. 1962, 17, 776–783. [Google Scholar] [CrossRef]
- May, J.G.; Kennedy, R.S.; Williams, M.C.; Dunlap, W.P.; Brannan, J.R. Eye movement indices of mental workload. Acta Psychol. 1990, 75, 75–89. [Google Scholar] [CrossRef]
Stressor | Main Items | Examples |
---|---|---|
Exogenous disruptions | Emergency events | Earthquake, flood, etc. |
Losses | Death toll, property loss, etc. | |
Major hazard sources | Liquid oxygen storage tank, explosions factory, etc. | |
Significant hidden dangers | Potential landslides, hidden dangers in fire, etc. | |
Unfavorable environmental conditions | Rugged topography, heavy rainstorm, etc. | |
Endogenous disruptions | Ineffective map | Visual overload, inappropriate graphics, etc. |
Emergency tasks | Medical rescue, crowd evacuation, etc. | |
Psychological constraints on emergency management | Anxiety, fear, etc. | |
User’s negative background | Older age, poor map literacy, etc. |
Map | Thematic Layer | Base Map | ||||
---|---|---|---|---|---|---|
Accident Site | Fire Brigade Station | Route | Residential Areas | Park | Accident Site | |
Figure 4a map | Query time | 101.1 ms | 160.1 ms | / | 290.9 ms | 380.4 ms |
Visual conversions | 2 | 2 | 0 | 4 | 1 | |
Figure 4b map | Query time | 97.7 ms | 174.0 ms | / | 238.7 ms | 297.5 ms |
Visual conversions | 3 | 3 | 0 | 2 | 1 | |
Figure 4c map | Query time | 94.4 ms | 175.8 ms | 183.1 ms | 573.4 ms | 382.5 ms |
Visual conversions | 8 | 5 | 6 | 3 | 2 |
T Matched (M ± SD) | Std.Error Mean | t | Sig. | Norm (M ± SD) | |
---|---|---|---|---|---|
Before | After | ||||
30.45 ± 7.18 | 52.70 ± 5.82 | −22.25 | −18.845 | 0.000 | 45.31 ± 11.99 |
Group A (Figure 4a Map) | Group B (Figure 4b Map) | Group C (Figure 4c Map) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cartographic Objects | Fire Brigade Station | Route | Accident Site | Fire Brigade Station | Route | Accident Site | Fire Brigade Station | Route | Accident Site |
Accuracy | 100% | 85% | 98% | 100% | 80% | 100% | 100% | 90% | 100% |
Average time | 1257 ms | 1280 ms | 1251 ms | 805 ms | 815 ms | 804 ms | 675 ms | 680 ms | 679 ms |
Overall average time | 1262.67 ms | 808 ms | 678 ms |
Pairs | Paired Differences | t | Sig. | |||
---|---|---|---|---|---|---|
Mean | Std.Deviation | Std.Error Mean | ||||
Pair 1 | A-B | 454.67 | 217.15 | 28.03 | 16.22 | 0.000 |
Pair 2 | A-C | 584.67 | 240.45 | 31.04 | 18.83 | 0.000 |
Pair 3 | B-C | 130.00 | 94.91 | 12.25 | 10.61 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, P.; Li, D.; Liu, T.; Zhang, L.; Yang, X.; Li, Y. Crisis Map Design Considering Map Cognition. ISPRS Int. J. Geo-Inf. 2021, 10, 692. https://doi.org/10.3390/ijgi10100692
Du P, Li D, Liu T, Zhang L, Yang X, Li Y. Crisis Map Design Considering Map Cognition. ISPRS International Journal of Geo-Information. 2021; 10(10):692. https://doi.org/10.3390/ijgi10100692
Chicago/Turabian StyleDu, Ping, Dingkai Li, Tao Liu, Liming Zhang, Xiaoxia Yang, and Yikun Li. 2021. "Crisis Map Design Considering Map Cognition" ISPRS International Journal of Geo-Information 10, no. 10: 692. https://doi.org/10.3390/ijgi10100692
APA StyleDu, P., Li, D., Liu, T., Zhang, L., Yang, X., & Li, Y. (2021). Crisis Map Design Considering Map Cognition. ISPRS International Journal of Geo-Information, 10(10), 692. https://doi.org/10.3390/ijgi10100692