Spatial Modeling and Analysis of the Determinants of Property Crime in Portugal
Abstract
:1. Introduction
2. Literature on Geography of Crime Analysis
3. Data and Methods
3.1. Study Area and Data
3.1.1. Crime Data
3.1.2. Demographic and Socioeconomic Data
3.2. Poisson-Based Regression Models
4. Results and Discussion
4.1. Spatial Effects in Crime Rates
4.2. Model Performance Comparison
4.3. Spatial Analyses of the Coefficients
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tonry, M. Why Crime Rates Are Falling throughout the Western World. Crime Justice 2014, 43, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Brenig, M.; Proeger, T. Putting a Price Tag on Security: Subjective Well-Being and Willingness-to-Pay for Crime Reduction in Europe. J. Happiness Stud. 2018, 19, 145–166. [Google Scholar] [CrossRef]
- Government of Portugal. Relatório Anual de Segurança Interna 2019; Sistema de Segurança Interna, Gabinete do Secretário-Geral, XXII Governo-República Portuguesa; Portuguese Republic Government: Lisboa, Portugal, 30 June 2020.
- Amante, A.; Saraiva, M.; Marques, T.S. Community Crime Prevention in Portugal: An Introduction to Local Safety Contracts. Crime Prev. Community Saf. 2021, 23, 155–173. [Google Scholar] [CrossRef]
- Saraiva, M.; Matijosaitiene, I.; Diniz, M.; Velicka, V. Model (My) Neighbourhood—A Bottom-up Collective Approach for Crime-Prevention in Portugal and Lithuania. JPMD 2016, 9, 166–190. [Google Scholar] [CrossRef]
- Tulumello, S. The Multiscalar Nature of Urban Security and Public Safety: Crime Prevention from Local Policy to Policing in Lisbon (Portugal) and Memphis (the United States). Urban Aff. Rev. 2018, 56, 1134–1169. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S. Prison, Ethnicities and State: Establishing Theoretical and Empirical Connections; Prisons, State and Violence; Guia, M., Gomes, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 49–69. [Google Scholar] [CrossRef]
- Matos, M.; Gonçalves, M.; Maia, Â. Human Trafficking and Criminal Proceedings in Portugal: Discourses of Professionals in the Justice System. Trends Organ. Crime 2018, 21, 370–400. [Google Scholar] [CrossRef]
- Martins, P.C.; Mendes, S.M.; Fernández-Pacheco, G.; Tendais, I. Juvenile Victimization in Portugal through the Lens of ISRD-3: Lifetime Prevalence, Predictors, and Implications. Eur. J. Crim. Policy Res. 2019, 25, 317–343. [Google Scholar] [CrossRef]
- Matos, M.; Grangeia, H.; Ferreira, C.; Azevedo, V.; Gonçalves, M.; Sheridan, L. Stalking Victimization in Portugal: Prevalence, Characteristics, and Impact. Int. J. Law Crime Justice 2019, 57, 103–115. [Google Scholar] [CrossRef]
- Gonçalves, M.; Ferreira, C.; Machado, A.; Matos, M. Men Victims of Stalking in Portugal: Predictors of Help-Seeking Behaviours. Eur. J. Crim. Policy Res. 2021, 1–18. [Google Scholar] [CrossRef]
- Matias, A.; Gonçalves, M.; Soeiro, C.; Matos, M. Intimate Partner Homicide in Portugal: What Are the (As) Symmetries Between Men and Women? Eur. J. Crim. Policy Res. 2020, 1–24. [Google Scholar] [CrossRef]
- Rajcic, S.T. Spatial Analysis of Crime Evolution in Portugal between 1995 and 2013. Master’s Thesis, NOVA Information Management School, Lisboa, Portugal, 2015. [Google Scholar]
- Macedo, A. Para Uma Discussão Dos Determinantes Da Criminalidade Em Portugal. Master’s Thesis, Universidade do Minho, Braga, Portugal, 2016. [Google Scholar]
- Costa, J.D.; Costa, A.C. Application of Spatial Regression to Investigate Current Patterns of Crime in the North of Portugal; Societal Geo-Innovation: Short papers, posters and poster abstracts of the 20th AGILE Conference on Geographic Information Science, Wageningen University & Research; Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F., Eds.; Wageningen University & Research: Wageningen, The Netherlands, 2017; pp. 9–12. Available online: http://hdl.handle.net/10362/75707 (accessed on 22 February 2021).
- Amaral, R.F. Avaliação Espacial Como Estratégia Mitigacional Preditiva: O Crime de Furto no Interior de Residências na Divisão Policial de Loures. MSc Dissertation, Instituto Superior de Ciências Policiais e Segurança Interna, Lisboa, Portugal, 2018. [Google Scholar]
- Caplan, J.M.; Kennedy, L.W. Risk Terrain Modeling: Crime Prediction and Risk Reduction; University of California Press: Berkeley, CA, USA, 2016. [Google Scholar]
- Neto, M.D.C.; Nascimento, M.; Sarmento, P.; Ribeiro, S.; Rodrigues, T.; Charlton, M. Implementation of a Dashboard for Security Forces Data Visualization; Associação Portuguesa de Sistemas de Informação: Guimaraes, Portugal, 2018; Available online: https://aisel.aisnet.org/capsi2018/19 (accessed on 7 July 2021).
- Lee, Y.; Eck, J.E.; SooHyun, O.; Martinez, N.N. How Concentrated Is Crime at Places? A Systematic Review from 1970 to 2015. Crime Sci. 2017, 6, 1–16. [Google Scholar] [CrossRef]
- Hayward, K.J. Five Spaces of Cultural Criminology. Br. J. Criminol. 2012, 52, 441–462. [Google Scholar] [CrossRef]
- Cohen, L.E.; Felson, M. Social Change and Crime Rate Trends: A Routine Activity Approach. Am. Sociol. Rev. 1979, 44, 608. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Brantingham, P.L.; Andresen, M.A. The Geometry of Crime and Crime Pattern Theory. In Environmental Criminology and Crime Analysis; Routledge: Abington, UK, 2017; Volume 2. [Google Scholar]
- Malczewski, J.; Poetz, A. Residential Burglaries and Neighborhood Socioeconomic Context in London, Ontario: Global and Local Regression Analysis. Prof. Geogr. 2005, 57, 516–529. [Google Scholar] [CrossRef]
- Curtis-Ham, S.; Bernasco, W.; Medvedev, O.N.; Polaschek, D. A Framework for Estimating Crime Location Choice Based on Awareness Space. Crime Sci. 2020, 9, 23. [Google Scholar] [CrossRef]
- Shaw, C.R.; McKay, H.D. Juvenile Delinquency and Urban Areas: A Study of Rates of Delinquents in Relation to Differential Characteristics of Local Communities in American Cities; University of Chicago Press: Chicago, IL, USA, 1942. [Google Scholar]
- Cahill, M.E.; Mulligan, G.F. The Determinants of Crime in Tucson, Arizona. Urban Geogr. 2003, 24, 582–610. [Google Scholar] [CrossRef]
- Smith, W.R.; Frazee, S.G.; Davison, E.L. Furthering the Integration of Routine Activity and Social Disorganization Theories: Small Units of Analysis and the Study of Street Robbery as a Diffusion Process. Criminology 2000, 38, 489–524. [Google Scholar] [CrossRef]
- Sampson, R.J. Urban Black Violence: The Effect of Male Joblessness and Family Disruption. Am. J. Sociol. 1987, 93, 348–382. [Google Scholar] [CrossRef] [Green Version]
- Sampson, R.J.; Groves, W.B. Community Structure and Crime: Testing Social-Disorganization Theory. Am. J. Sociol. 1989, 94, 774–802. [Google Scholar] [CrossRef] [Green Version]
- Sampson, R.J.; Morenoff, J.D.; Gannon-Rowley, T. Assessing “Neighborhood Effects”: Social Processes and New Directions in Research. Annu. Rev. Sociol. 2002, 28, 443–478. [Google Scholar] [CrossRef] [Green Version]
- Graif, C.; Gladfelter, A.S.; Matthews, S.A. Urban Poverty and Neighborhood Effects on Crime: Incorporating Spatial and Network Perspectives. Sociol. Compass 2014, 8, 1140–1155. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.W.; Pridemore, W.A. Toward an Integrated Multilevel Theory of Crime at Place: Routine Activities, Social Disorganization, and the Law of Crime Concentration. J. Quant. Criminol. 2019, 35, 543–572. [Google Scholar] [CrossRef]
- Wickes, R. Social Disorganization Theory: Its History and Relevance to Crime Prevention. In Preventing Crime and Violence; Teasdale, B., Bradley, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 57–66. [Google Scholar] [CrossRef]
- Kubrin, C.E.; Mioduszewski, M.D. Social Disorganization Theory: Past, Present and Future. In Handbook on Crime and Deviance; Krohn, M.D., Hendrix, N., Penly Hall, G., Lizotte, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 197–211. [Google Scholar] [CrossRef]
- Sypion-Dutkowska, N.; Leitner, M. Land Use Influencing the Spatial Distribution of Urban Crime: A Case Study of Szczecin, Poland. ISPRS Int. J. Geo-Inf. 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Huang, X.; Silva, E.S.; Ghodsi, M. A Review of Data Mining Applications in Crime. Stat. Anal. Data Min. 2016, 9, 139–154. [Google Scholar] [CrossRef]
- Quick, M.; Li, G.; Brunton-Smith, I. Crime-General and Crime-Specific Spatial Patterns: A Multivariate Spatial Analysis of Four Crime Types at the Small-Area Scale. J. Crim. Justice 2018, 58, 22–32. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Xie, J.; Hu, X. Modeling Local-Scale Violent Crime Rate: A Comparison of Eigenvector Spatial Filtering Models and Conventional Spatial Regression Models. Prof. Geogr. 2021, 73, 312–321. [Google Scholar] [CrossRef]
- Kelling, C.; Graif, C.; Korkmaz, G.; Haran, M. Modeling the Social and Spatial Proximity of Crime: Domestic and Sexual Violence Across Neighborhoods. J. Quant. Criminol. 2021, 37, 481–516. [Google Scholar] [CrossRef]
- Lee, D.W.; Lee, D.S. Analysis of Influential Factors of Violent Crimes and Building a Spatial Cluster in South Korea. Appl. Spat. Anal. Policy 2020, 13, 759–776. [Google Scholar] [CrossRef]
- Metz, N.; Burdina, M. Neighbourhood Income Inequality and Property Crime. Urban Stud. 2018, 55, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Chichester, UK, 2002. [Google Scholar]
- Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Song, G.; Ren, F. Modeling Spatial Effect in Residential Burglary: A Case Study from ZG City, China. ISPRS Int. J. Geo-Inf. 2017, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Andresen, M.A.; Ha, O.K. Spatially Varying Relationships between Immigration Measures and Property Crime Types in Vancouver Census Tracts, 2016. Br. J. Criminol. 2020, 60, 1342–1367. [Google Scholar] [CrossRef]
- Silva, C.; Melo, S.; Santos, A.; Junior, P.A.; Sato, S.; Santiago, K.; Sá, L. Spatial Modeling for Homicide Rates Estimation in Pernambuco State-Brazil. ISPRS Int. J. Geo-Inf. 2020, 9, 740. [Google Scholar] [CrossRef]
- Vilalta, C.J. How Exactly Does Place Matter in Crime Analysis? Place, Space, and Spatial Heterogeneity. J. Crim. Justice Educ. 2013, 24, 290–315. [Google Scholar] [CrossRef]
- Kelly, M. Inequality and Crime. Rev. Econ. Stat. 2000, 82, 530–539. [Google Scholar] [CrossRef]
- Osgood, D.W. Poisson-Based Regression Analysis of Aggregate Crime Rates. J. Quant. Criminol. 2000, 16, 21–43. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Xiao, L.; Xu, C.; Long, D. Integrative Analysis of Spatial Heterogeneity and Overdispersion of Crime with a Geographically Weighted Negative Binomial Model. ISPRS Int. J. Geo-Inf. 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, C.M.; Jurado, V. Spatial Pattern of Motor Vehicle Thefts in Ciudad Juárez, Mexico: An Analysis Using Geographically Weighted Poisson Re-Gression. Pap. Appl. Geogr. 2019, 5, 176–191. [Google Scholar] [CrossRef]
- Vilalta, C.J.; Fondevila, G. Modeling Crime in an Uptown Neighborhood: The Case of Santa Fe in Mexico City. Pap. Appl. Geogr. 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Pratt, T.C.; Cullen, F.T. Assessing Macro-Level Predictors and Theories of Crime: A Meta-Analysis. Crime Justice 2005, 32, 373–450. [Google Scholar] [CrossRef]
- Carter, J.; Louderback, E.R.; Vildosola, D.; Sen Roy, S. Crime in an Affluent City: Spatial Patterns of Property Crime in Coral Gables, Florida. Eur. J. Crim. Policy Res. 2020, 26, 547–570. [Google Scholar] [CrossRef]
- Andresen, M.A.; Ha, O.K.; Davies, G. Spatially Varying Unemployment and Crime Effects in the Long Run and Short Run. Prof. Geogr. 2021, 73, 297–311. [Google Scholar] [CrossRef]
- Wang, L.; Lee, G.; Williams, I. The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Zahnow, R. Mixed Land Use: Implications for Violence and Property Crime. City Community 2018, 17, 1119–1142. [Google Scholar] [CrossRef]
- Quick, M.; Law, J.; Li, G. Time-Varying Relationships between Land Use and Crime: A Spatio-Temporal Analysis of Small-Area Seasonal Property Crime Trends. Environ. Plan. B: Urban Anal. City Sci. 2019, 46, 1018–1035. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Chen, Y.; Li, J. Investigating the Influences of Tree Coverage and Road Density on Property Crime. ISPRS Int. J. Geo-Inf. 2018, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Nakaya, T.; Martin, C.; Brunsdon, C.; Lewis, P.; Yao, J.; Fotheringham, A.S. GWR4.09 User Manual; Windows Application for Geographically Weighted Regression Modelling; GitHub: San Francisco, CA, USA, 2016. [Google Scholar]
- Barreira, A.P.; Ramalho, J.J.S.; Panagopoulos, T.; Guimarães, M.H. Factors Driving the Population Growth and Decline of Portuguese Cities. Growth Chang. 2017, 48, 853–868. [Google Scholar] [CrossRef]
- Elonheimo, H.; Gyllenberg, D.; Huttunen, J.; Ristkari, T.; Sillanmäki, L.; Sourander, A. Criminal Offending among Males and Females between Ages 15 and 30 in a Population-Based Nationwide 1981 Birth Cohort: Results from the FinnCrime Study. J. Adolesc. 2014, 37, 1269–1279. [Google Scholar] [CrossRef]
- Osgood, D.W.; Chambers, J.M. Social Disorganization Outside the Metropolis: An Analysis of Rural Youth Violence. Criminology 2000, 38, 81–116. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.K. Youth Crime and Family Disruption in Canadian Municipalities: An Adaptation of Shaw and McKay’s Social Disorganization Theory. Int. J. Law Crime Justice 2012, 40, 100–114. [Google Scholar] [CrossRef]
- Kposowa, A.J.; Breault, K.D.; Harrison, B.M. Reassessing the Structural Covariates of Violent and Property Crimes in the USA: A County Level Analysis. Br. J. Sociol. 1995, 79–105. [Google Scholar] [CrossRef]
- Vilalta, C.J.; Sanchez, T.W.; Fondevila, G.; Ramirez, M. A Descriptive Model of the Relationship between Police CCTV Systems and Crime. Evidence from Mexico City. Police Pract. Res. 2018, 20, 105–121. [Google Scholar] [CrossRef]
- Nakaya, T.; Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Poisson Regression for Disease Association Mapping. Stat. Med. 2005, 24, 2695–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaya, T.; Fotheringham, A.S.; Charlton, M.; Brunsdon, C. Semiparametric Geographically Weighted Generalised Linear Modelling in GWR 4.0. In Proceedings of the 10th International Conference on GeoComputation, University of New South Wales, Sydney, Australia, 30 November–2 December, 2009; Lees, B.G., Laffan, S.W., Eds.; UNSW: Sydney, Australia, 2009. [Google Scholar]
- Andresen, M.A. A Spatial Analysis of Crime in Vancouver, British Columbia: A Synthesis of Social Disorganization and Routine Activity Theory. Can. Geogr./Le Géographe Can. 2006, 50, 487–502. [Google Scholar] [CrossRef]
- Matos, F.L.D. Recent Dynamics in the Portuguese Housing Market as Compared with the European Union. Bull. Geography. Socio-Econ. Ser. 2012, 18, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Roth, J.J. Empty Homes and Acquisitive Crime: Does Vacancy Type Matter? Am. J. Crim. Justice 2019, 44, 770–787. [Google Scholar] [CrossRef]
- Atems, B. Identifying the Dynamic Effects of Income Inequality on Crime. Oxf. Bull. Econ. Statistics 2020, 82, 751–782. [Google Scholar] [CrossRef]
- Imran, M.; Hosen, M.; Chowdhury, M.A.F. Does Poverty Lead to Crime? Evidence from the United States of America. Int. J. Soc. Econ. 2018, 45, 1424–1438. [Google Scholar] [CrossRef]
- Pare, P.P.; Felson, R. Income Inequality, Poverty and Crime across Nations. Br. J. Sociol. 2014, 65, 434–458. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.G. Does Income Inequality Explain the Geography of Residential Burglaries? The Case of Belo Horizonte, Brazil. ISPRS Int. J. Geo-Inf. 2019, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Andresen, M.A. Unemployment, Business Cycles, Crime, and the Canadian Provinces. J. Crim. Justice 2013, 41, 220–227. [Google Scholar] [CrossRef]
- Goda, T.; Torres García, A. Inequality and Property Crime: Does Absolute Inequality Matter? Int. Crim. Justice Rev. 2019, 29, 121–140. [Google Scholar] [CrossRef]
- Kim, B.; Seo, C.; Hong, Y.-O. A Systematic Review and Meta-Analysis of Income Inequality and Crime in Europe: Do Places Matter? Eur. J. Crim. Policy Res. 2020, 1–24. [Google Scholar] [CrossRef]
- Ferreira, E.V. Economic Deprivation and Crime: The Case of Portugal (1993–2009). Sociol. Probl. Prat. 2011, 67, 107–125. [Google Scholar] [CrossRef]
- Cantor, D.; Land, K.C. Unemployment and Crime Rates in the Post-World War II United States: A Theoretical and Empirical Analysis. Am. Sociol. Rev. 1985, 50, 317. [Google Scholar] [CrossRef]
- Costantini, M.; Meco, I.; Paradiso, A. Do Inequality, Unemployment and Deterrence Affect Crime over the Long Run? Reg. Stud. 2018, 52, 558–571. [Google Scholar] [CrossRef] [Green Version]
- Frederick, S.A.; Jozefowicz, J.J. Rural-Urban Differences in the Unemployment-Crime Relationship: The Case of Pennsylvania. Atl. Econ. J. 2018, 46, 189–201. [Google Scholar] [CrossRef]
- Jeffery, C.R. Criminal Behavior and the Physical Environment: A Perspective. Am. Behav. Sci. 1976, 20, 149–174. [Google Scholar] [CrossRef]
- Casteel, C.; Peek-Asa, C. Effectiveness of Crime Prevention through Environmental Design (CPTED) in Reducing Robberies. Am. J. Prev. Med. 2000, 18, 99–115. [Google Scholar] [CrossRef]
- Cozens, P.M.; Saville, G.; Hillier, D. Crime Prevention through Environmental Design (CPTED): A Review and Modern Bibliography. Prop. Manag. 2005, 23, 328–356. [Google Scholar] [CrossRef] [Green Version]
- Chainey, S. A Quasi-Experimental Evaluation of the Impact of Forensic Property Marking in Decreasing Burglaries. Secur. J. 2021, 1–20. [Google Scholar] [CrossRef]
- Cozens, P.; Love, T. A Review and Current Status of Crime Prevention through Environmental Design (CPTED). J. Plan. Lit. 2015, 30, 393–412. [Google Scholar] [CrossRef]
- Mihinjac, M.; Saville, G. Third-Generation Crime Prevention Through Environmental Design (CPTED). Soc. Sci. 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Molaei, P.; Hashempour, P. Evaluation of CPTED Principles in the Housing Architecture of Rural Areas in the North of Iran (Case Studies: Sedaposhte and Ormamalal). Int. J. Law Crime Justice 2020, 62, 100405. [Google Scholar] [CrossRef]
- Aransiola, T.J.; Ceccato, V. The role of modern technology in rural situational crime prevention: A review of the literature. In Rural Crime Prevention: Theory, Tactics and Techniques, 1st ed.; Harkness, A., Ed.; Routledge: London, UK, 2020; pp. 58–72. [Google Scholar] [CrossRef]
- Haberman, C.P. Overlapping Hot Spots?: Examination of the Spatial Heterogeneity of Hot Spots of Different Crime Types. Criminol. Public Policy 2017, 16, 633–660. [Google Scholar] [CrossRef]
- Walker, J.T.; Drawve, G.R. Foundations of Crime Analysis: Data, Analyses, and Mapping, 1st ed.; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- Xiao, J. Spatial Aggregation Entropy: A Heterogeneity and Uncertainty Metric of Spatial Aggregation. Ann. Am. Assoc. Geogr. 2021, 111, 1236–1252. [Google Scholar] [CrossRef]
Variable | Description | Mean | Standard Deviation | Minimum | Maximum | Correlation (p-Value) |
---|---|---|---|---|---|---|
Young resident population | Rate of individuals between 15 and 24 years old (source: PORDATA) | 10.274 | 1.362 | 6.488 | 13.973 | –0.0934 (0.1204) |
Retention and dropout rates in basic education | Rate of students’ failure and early school leavers from basic education in the 2017–2018 school year (source: PORDATA) | 3.137 | 2.098 | 0 | 12.1 | 0.1507 (0.0119) |
Gross enrollment rate | Students enrolled in a given level of education, regardless of age, expressed as a percentage of the official school-age population corresponding to the same level of education (source: DGEEC) | 108.875 | 14.916 | 72.1 | 181.9 | 0.1934 (0.0012) |
Conventional dwellings | Ratio between the number of conventional dwellings of each municipality and the surface of that territory in Km2 (source: PORDATA) | 165.585 | 443.799 | 5.6 | 3708.8 | 0.4543 (<0.0001) |
Guaranteed Minimum Income and Social Integration Benefit | Beneficiaries of the Guaranteed Minimum Income and Social Integration Benefit in the total resident population aged 15 and over (%) (source: PORDATA) | 2.988 | 1.988 | 0.4 | 15.5 | 0.0291 (0.6290) |
Purchasing power per capita | This composite indicator aims to indicate purchasing power on a daily basis in per capita terms in the different municipalities, using the figure for Portugal as a reference (index number in % with a value of 100 on the country average) (source: PORDATA) | 80.519 | 18.677 | 55.3 | 219.6 | 0.6174 (<0.0001) |
Monthly remuneration of employees | Average gross amount, before deduction of taxes and social security contributions, in cash or in-kind, paid regularly in the reference period and corresponding to the normal working period, in euros (source: PORDATA) | 782.147 | 134.464 | 640.1 | 2133.5 | 0.3729 (<0.0001) |
Unemployment rate | Unemployment registered at the public employment office in total of resident population aged 15 to 64 (%) (source: PORDATA) | 6.482 | 2.328 | 3.0 | 15.8 | –0.0500 (0.4061) |
Foreign population | Foreign population with legal resident status as a percentage of the resident population (source: PORDATA) | 2.970 | 3.932 | 0.3 | 26.6 | 0.6379 (<0.0001) |
Model No. | Predictors | AICc of the Global Model | AICc of the GWPR Model | Percent of Deviance Explained of the Global Model | Percent of Deviance Explained of the GWPR Model |
---|---|---|---|---|---|
1 | All 9 variables | 6328.360 | 2937.661 | 0.861976 | 0.941470 |
8 (best) | 8 variables: all except ‘Monthly remuneration of employees’ | 6326.444 | 2938.292 | 0.861971 | 0.940991 |
6 | 8 variables: all except ‘Gross enrollment rate’ | 6545.357 | 2999.848 | 0.857180 | 0.939530 |
7 | 8 variables: all except ‘Conventional dwellings’ | 6326.214 | 3045.044 | 0.861976 | 0.938852 |
5 | 7 variables: all except ‘Conventional dwellings’ and ‘Monthly remuneration of employees’ | 6324.318 | 3062.525 | 0.861970 | 0.937960 |
3 | 8 variables: all except ‘Young resident population’ | 6372.742 | 3092.361 | 0.860957 | 0.937563 |
9 | 6 variables: all except ‘Young resident population’, ‘Retention and dropout rates in basic education’, and ‘Monthly remuneration of employees’ | 6413.493 | 3264.871 | 0.859973 | 0.932586 |
11 | 5 variables: all except ‘Gross enrollment rate’, ‘Conventional dwellings’, ‘Unemployment rate’, and ‘Monthly remuneration of employees’ | 6749.296 | 3349.604 | 0.852578 | 0.930480 |
10 | 5 variables: all except ‘Retention and dropout rates in basic education’, ‘Gross enrollment rate’, ‘Unemployment rate’, and ‘Monthly remuneration of employees’ | 6821.190 | 3465.591 | 0.851005 | 0.927567 |
4 | 7 variables: all except ‘Young resident population’ and ‘Purchasing power per capita’ | 8219.041 | 3661.203 | 0.820509 | 0.924551 |
2 | 8 variables: all except ‘Purchasing power per capita’ | 8152.876 | 3669.091 | 0.822004 | 0.924930 |
15 | 7 variables: all except ‘Guaranteed Minimum Income and Social Integration Benefit’ and ‘Unemployment rate’ | 7575.738 | 3695.206 | 0.834586 | 0.923893 |
14 | 7 variables: all except ‘Conventional dwellings’ and ‘Purchasing power per capita’ | 8243.499 | 3867.498 | 0.819974 | 0.920283 |
12 | 7 variables: all except ‘Retention and dropout rates in basic education’ and ‘Guaranteed Minimum Income and Social Integration Benefit’ | 7529.236 | 3900.690 | 0.835604 | 0.919182 |
13 | 7 variables: all except ‘Gross enrollment rate’ and ‘Purchasing power per capita’ | 9165.079 | 3906.035 | 0.799808 | 0.919152 |
17 | 7 variables: all except ‘Monthly remuneration of employees’ and ‘Purchasing power per capita’ | 9178.405 | 4185.598 | 0.799516 | 0.913153 |
16 | 7 variables: all except ‘Foreign population’ and ‘Purchasing power per capita’ | 14071.495 | 4692.504 | 0.692443 | 0.902055 |
Global Model | GWPR Model | |||||
---|---|---|---|---|---|---|
Variable | β Estimate | Std. Error | Pr(>|t|) | Mean | Std. Deviation | Interquartile Range |
Intercept | −5.6521 | 0.0447 | <0.001 | −5.2838 | 1.095430 | 1.1535 |
Young resident population | 0.0200 | 0.0029 | <0.001 | 0.0018 | 0.0696 | 0.0708 |
Retention and dropout rates in basic education | 0.0186 | 0.0022 | <0.001 | 0.0309 | 0.0371 | 0.0504 |
Gross enrollment rate | 0.0029 | 0.0002 | <0.001 | 0.0006 | 0.0049 | 0.0053 |
Conventional dwellings | 0.0000 | 0.000004 | 0.459 | 0.0010 | 0.0023 | 0.0008 |
Guaranteed Minimum Income and Social Integration Benefit | 0.0908 | 0.0030 | <0.001 | 0.0680 | 0.0657 | 0.0951 |
Purchasing power per capita | 0.0064 | 0.0001 | <0.001 | 0.0067 | 0.0060 | 0.0062 |
Unemployment rate | −0.0336 | 0.0025 | <0.001 | −0.0383 | 0.0457 | 0.0621 |
Foreign population | 0.0416 | 0.0007 | <0.001 | 0.0616 | 0.0707 | 0.0864 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, J.P.; Costa, A.C. Spatial Modeling and Analysis of the Determinants of Property Crime in Portugal. ISPRS Int. J. Geo-Inf. 2021, 10, 731. https://doi.org/10.3390/ijgi10110731
Tavares JP, Costa AC. Spatial Modeling and Analysis of the Determinants of Property Crime in Portugal. ISPRS International Journal of Geo-Information. 2021; 10(11):731. https://doi.org/10.3390/ijgi10110731
Chicago/Turabian StyleTavares, Joana Paulo, and Ana Cristina Costa. 2021. "Spatial Modeling and Analysis of the Determinants of Property Crime in Portugal" ISPRS International Journal of Geo-Information 10, no. 11: 731. https://doi.org/10.3390/ijgi10110731
APA StyleTavares, J. P., & Costa, A. C. (2021). Spatial Modeling and Analysis of the Determinants of Property Crime in Portugal. ISPRS International Journal of Geo-Information, 10(11), 731. https://doi.org/10.3390/ijgi10110731