A Data-Based Bi-Objective Approach to Explore the Accessibility of Multimodal Public Transport Networks
Abstract
:1. Introduction
2. A Data-Based Multimodal Network Model
2.1. Basic Assumption
2.2. Multimodal Network Model
3. Analysis Methods
3.1. A Two-Stage Bi-Objective Opportunity Model
3.2. A Multimodal Reliability Path Finding Model
3.3. Reliability Boundary Convergence Algorithm
Algorithm 1 The reliability boundary convergence algorithm |
1: Input: |
2: Output: . |
3: Other Notations: Construct a multimodal network based on the foot network, and divide the networks into seven parts . |
4: Step 1: Initialization |
5: Set: |
6: Step 2: Calculate the travel time and monetary cost of each transfer link in the multimodal network. |
7: Step 3: Evaluate accessibility. |
8: If : |
9: |
10: Elseif: |
11: |
12: Else: |
13: |
14: Step 4: Evaluate the cumulative opportunity accessibility of location by adding up POIs of all accessible grids. |
15: Def acc_probabilityless50( ): |
16: For G in [ G1, G2, G3, G4, G5, G6, G7 ]: |
17: Set i = 1 |
18: Do while: |
19: If : |
20: Find the i-shortest path with the link-time by using the K-shortest algorithm, then calculate its lower boundary travel time , effective travel time , effective path monetary cost , and upper boundary travel time . |
21: Set |
22: If: |
23: |
24: |
25: Else if: |
26: |
27: |
28: |
29: Else: |
30: Find the i-shortest path with the link-time by using the K-shortest algorithm, then calculate its lower boundary travel time , effective travel time , effective path monetary cost , and upper boundary travel time . |
31: Set |
32: If: |
33: |
34: |
35: Else if: |
36: |
37: |
38: |
39: Return |
40: Def acc_probabilityequal50( ): |
41: For G in [ G1, G2, G3, G4, G5, G6, G7 ]: |
42: Find the shortest path with the link time of the classic Dijkstra algorithm, and then calculate its effective travel time and effective path monetary cost . |
43: If: |
44: |
45: |
46: Return |
47: Def acc_probabilitymore50( ): |
48: For G in [ G1, G2, G3, G4, G5, G6, G7 ]: |
49: Set i = 1 |
50: Do while: |
51: If : |
52: Find the i-shortest path with the link-time by using the K-shortest algorithm, and then calculate its lower boundary travel time , effective travel time , effective path monetary cost , and upper boundary travel time . |
53: Set |
54: If: |
55: |
56: |
57: Else if: |
58: |
59: |
60: |
61: Else: |
62: Find the i-shortest path with the link-time by using the K-shortest algorithm, and then calculate its lower boundary travel time , effective travel time , effective path monetary cost , and upper boundary travel time . |
63: Set |
64: If: |
65: |
66: |
67: Else if: |
68: |
69: |
70: |
71: Return |
3.4. Evaluation Indicators
4. Study Area and Data Collection
5. Results
5.1. The Impedance Heterogeneity
5.2. Advantages of Multimodal Compared with Unimodal
5.3. Advantages of Multi-Modal Transfers under Different Risk-Preference Conditions
5.4. Impacts of Reliability
5.5. Comparison of Different Methods
5.6. Applications in Transportation Planning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jia, S.; Yuan, Q.; Cai, W.; Lv, J.; Hu, L. Establishing prediction models for feeding power and material drilling power to support sustainable machining. Int. J. Adv. Manuf. Technol. 2019, 100, 2243–2253. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, Z.; Sun, H.; Liu, F.; Zhao, J. Finding most reliable path with extended shifted lognormal distribution. IEEE Access 2018, 6, 72494–72505. [Google Scholar] [CrossRef]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Plan. Assoc. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Wachs, M.; Kumagai, T.G. Physical accessibility as a social indicator. Socio-Econ. Plan. Sci. 1973, 7, 437–456. [Google Scholar] [CrossRef]
- Uncles, M.D. Discrete Choice Analysis: Theory and Application to Travel Demand. J. Oper. Res. Soc. 1987, 38, 370–371. [Google Scholar] [CrossRef]
- Miller, H.J. Modelling accessibility using space-time prism concepts within geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 287–301. [Google Scholar] [CrossRef]
- Shen, L.; Shao, H.; Wu, T.; Lam, W.H.K.; Zhu, E.C. An energy-efficient reliable path finding algorithm for stochastic road networks with electric vehicles. Transp. Res. Part C Emerg. Technol. 2019, 102, 450–473. [Google Scholar] [CrossRef]
- Kaparias, I.; Bell, M.G.H.; Belzner, H. A new measure of travel time reliability for in-vehicle navigation systems. J. Intell. Transp. Syst. Technol. Plan. Oper. 2008, 12, 202–211. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Xu, T.; Gao, L.; Zhao, X. Mapping spatial accessibility of public transportation network in an urban area—A case study of Shanghai Hongqiao Transportation Hub. Transp. Res. Part D Transp. Environ. 2018, 59, 478–495. [Google Scholar] [CrossRef]
- Chen, A.; Ji, Z. Path finding under uncertainty. J. Adv. Transp. 2005, 39, 19–37. [Google Scholar] [CrossRef]
- Nie, Y.; Wu, X. Shortest path problem considering on-time arrival probability. Transp. Res. Part B Methodol. 2009, 43, 597–613. [Google Scholar] [CrossRef]
- Chen, B.Y.; Li, Q.; Wang, D.; Shaw, S.L.; Lam, W.H.K.; Yuan, H.; Fang, Z. Reliable Space-Time Prisms Under Travel Time Uncertainty. Ann. Assoc. Am. Geogr. 2013, 103, 1502–1521. [Google Scholar] [CrossRef]
- Matisziw, T.C.; Grubesic, T.H. Evaluating locational accessibility to the US air transportation system. Transp. Res. Part A Policy Pract. 2010, 44, 710–722. [Google Scholar] [CrossRef]
- Jiang, S. Urban Public Transit System Accessibility Evaluation and Optimization Method. Ph.D. Thesis, Beijing Jiaotong University, Beijing, China, 2019. [Google Scholar]
- Mavoa, S.; Witten, K.; McCreanor, T.; O’Sullivan, D. GIS based destination accessibility via public transit and walking in Auckland, New Zealand. J. Transp. Geogr. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Salonen, M.; Toivonen, T. Modelling travel time in urban networks: Comparable measures for private car and public transport. J. Transp. Geogr. 2013, 31, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ni, J.; Xi, C.; Li, S.; Wang, J. Determining intra-urban spatial accessibility disparities in multimodal public transport networks. J. Transp. Geogr. 2017, 65, 123–133. [Google Scholar] [CrossRef]
- Xia, N.; Cheng, L.; Li, M. Transnational Accessibility between Residential Areas Based on Multimodal Transport System. ISPRS Int. J. Geo-Inform. 2021, 10, 136. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, S.; Zeng, Z.; Li, J. Quantifying multi-modal public transit accessibility for large metropolitan areas: A time-dependent reliability modeling approach. Int. J. Geogr. Inf. Sci. 2018, 32, 1649–1676. [Google Scholar] [CrossRef]
- Sheffi, Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods; Prentice-Hall: Englewood Cliff, NJ, USA, 1985. [Google Scholar]
- Arentze, T.; Timmermans, H. Multistate supernetwork approach to modelling multi-activity, multimodal trip chains. Int. J. Geogr. Inf. Sci. 2004, 18, 631–651. [Google Scholar] [CrossRef]
- Liao, F.; Arentze, T.A.; Timmermans, H.J.P. Constructing personalized transportation networks in multi-state supernetworks: A heuristic approach. Int. J. Geogr. Inf. Sci. 2011, 25, 1885–1903. [Google Scholar] [CrossRef]
- Li, Q.; Liao, F.; Timmermans, H.J.P.; Huang, H.; Zhou, J. Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model. Transp. Res. Part B Methodol. 2018, 107, 102–123. [Google Scholar] [CrossRef]
- Pajor, T. Multi-Modal Route Planning Supervisors. Master’s Thesis, University of Karlsruhe (TH), Karlsruhe, Germany, 2009. [Google Scholar]
- Zhang, J. Personalized Route Finding in Multimodal Transportation Networks. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2016. [Google Scholar]
- Shao, H.; Lam, W.H.K.; Tam, M.L. A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand. Netw. Spat. Econ. 2006, 6, 173–204. [Google Scholar] [CrossRef]
- Tang, J.; Liang, J.; Zhang, S.; Huang, H.; Liu, F. Inferring driving trajectories based on probabilistic model from large scale taxi GPS data. Phys. A Stat. Mech. Appl. 2018, 506, 566–577. [Google Scholar] [CrossRef]
- Zhang, J.; Liao, F.; Arentze, T.; Timmermans, H. A multimodal transport network model for advanced traveler information systems. Proc.-Soc. Behav. Sci. 2011, 20, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Tomasiello, D.B.; Giannotti, M.; Arbex, R.; Davis, C. Multi-temporal transport network models for accessibility studies. Trans. GIS 2019, 23, 203–223. [Google Scholar] [CrossRef]
- Liao, F.; Rasouli, S.; Timmermans, H. Incorporating activity-travel time uncertainty and stochastic space-time prisms in multistate supernetworks for activity-travel scheduling. Int. J. Geogr. Inf. Sci. 2014, 28, 928–945. [Google Scholar] [CrossRef]
- Chen, B.Y.; Shi, C.; Zhang, J.; Lam, W.H.K.; Li, Q.; Xiang, S. Most reliable path-finding algorithm for maximizing on-time arrival probability. Transp. B 2017, 5, 253–269. [Google Scholar] [CrossRef]
- Chen, B.Y.; Li, Q.; Lam, W.H.K. Finding the k reliable shortest paths under travel time uncertainty. Transp. Res. Part B Methodol. 2016, 94, 189–203. [Google Scholar] [CrossRef]
- Lo, H.K.; Luo, X.W.; Siu, B.W.Y. Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion. Transp. Res. Part B Methodol. 2006, 40, 792–806. [Google Scholar] [CrossRef]
- Yen, J.Y. Finding the K Shortest Loopless Paths in a Network. Manag. Sci. 1971, 17, 712–716. [Google Scholar] [CrossRef]
Literatures | Multimode | Reliability | Constraint | ||
---|---|---|---|---|---|
Single-Objective | Bi-Objective | ||||
Travel Time | Generalized Cost | ||||
[3] | √ | ||||
[10,11,12,26] | √ | √ | |||
[13] | √ | ||||
[7] | √ | √ | |||
[27,28,29] | √ | √ | |||
[21,23,25] | √ | √ | |||
[19,30] | √ | √ | √ | ||
This paper | √ | √ | √ |
No. | Name | Label | Mode |
---|---|---|---|
1 | foot network + bus network | G1 | Unimode |
2 | foot network + subway network | G2 | |
3 | foot network + taxi network | G3 | |
4 | foot network + bus network + subway network | G4 | Combined mode |
5 | foot network + bus network + subway network + taxi transfer to subway from the origin | G5 | |
6 | foot network + bus network + subway network + subway transfer to taxi to the destination | G6 | |
7 | foot network + bus network + subway network+ taxi transfer to subway from the origin + subway transfer to taxi to the destination | G7 |
Grid ID | Accessibility | Data | Corresponding Ranking | Type Value | Grid Type | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMB 10 | RMB 20 | RMB 100 | Population | RMB 10 | RMB 20 | RMB 100 | Population | |||
134 | 73,495 | 89,601 | 177,144 | 10,842 | 4 | 3 | 2 | 0 | 4 | HS |
147 | 77,919 | 81,846 | 176,865 | 4155 | 4 | 3 | 2 | 0 | 4 | HS |
357 | 1737 | 24,003 | 185,823 | 20,260 | 0 | 1 | 2 | 4 | −4 | LL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Sun, H.; Feng, T.; Wu, J.; Lv, Y.; Xin, G. A Data-Based Bi-Objective Approach to Explore the Accessibility of Multimodal Public Transport Networks. ISPRS Int. J. Geo-Inf. 2021, 10, 758. https://doi.org/10.3390/ijgi10110758
Yu W, Sun H, Feng T, Wu J, Lv Y, Xin G. A Data-Based Bi-Objective Approach to Explore the Accessibility of Multimodal Public Transport Networks. ISPRS International Journal of Geo-Information. 2021; 10(11):758. https://doi.org/10.3390/ijgi10110758
Chicago/Turabian StyleYu, Wentao, Huijun Sun, Tao Feng, Jianjun Wu, Ying Lv, and Guangyu Xin. 2021. "A Data-Based Bi-Objective Approach to Explore the Accessibility of Multimodal Public Transport Networks" ISPRS International Journal of Geo-Information 10, no. 11: 758. https://doi.org/10.3390/ijgi10110758
APA StyleYu, W., Sun, H., Feng, T., Wu, J., Lv, Y., & Xin, G. (2021). A Data-Based Bi-Objective Approach to Explore the Accessibility of Multimodal Public Transport Networks. ISPRS International Journal of Geo-Information, 10(11), 758. https://doi.org/10.3390/ijgi10110758