Escaping from Cities during the COVID-19 Crisis: Using Mobile Phone Data to Trace Mobility in Finland
Abstract
:1. Introduction
2. Background
2.1. Case Finland—Multi-Local Living and the COVID-19 Crisis
2.2. Human Mobility, Mobile Phone Data, and COVID-19
2.3. Definition of Presence, Activity, and Movement in Mobile Phone Data
3. Materials and Methods
3.1. Data
3.2. Methodology
4. Results
4.1. Decrease in Overall Mobility in Finland
4.2. Escape from Cities to the Country
4.3. The Escape from Cities and the Recovery around Helsinki
5. Discussion
5.1. Multi-Local Living and Crisis Management
5.2. Feasibility of Mobile Phone Data in Crisis Management
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Giles, J.R.; Erbach-Schoenberg, E.; Tatem, A.J.; Gardner, L.; Bjørnstad, O.N.; Metcalf, C.J.E.; Wesolowski, A. The duration of travel impacts the spatial dynamics of infectious diseases. Proc. Natl. Acad. Sci. USA 2020, 117, 22572–22579. [Google Scholar] [CrossRef] [PubMed]
- Prothero, R.M. Disease and mobility: A neglected factor in epidemiology. Int. J. Epidemiol. 1977, 6, 259–267. [Google Scholar] [CrossRef]
- Askitas, N.; Tatsiramos, K.; Verheyden, B. Lockdown strategies, mobility patterns and COVID-19. arXiv 2020, arXiv:2006.00531. [Google Scholar]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Vespignani, A. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Sañudo, R. Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Glaeser, E.; Gorback, C.; Redding, S. How Much does COVID-19 Increase with Mobility? Evidence from New York and Four Other U.S. Cities. Natl. Bur. Econ. Res. 2020. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef]
- Santamaria, C.; Sermi, F.; Spyratos, S.; Iacus, S.M.; Annunziato, A.; Tarchi, D.; Vespe, M. Measuring the impact of COVID-19 confinement measures on human mobility using mobile positioning data. A European regional analysis. Saf. Sci. 2020, 132, 104925. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, B.; Walters, C.E.; Ainslie, K.E.C.; Eales, O.; Ciavarella, C.; Bhatia, S.; Riley, S. Anonymised and aggregated crowd level mobility data from mobile phones suggests that initial compliance with covid-19 social distancing interventions was high and geographically consistent across the UK. Wellcome Open Res. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Heiler, G.; Reisch, T.; Hurt, J.; Forghani, M.; Omani, A.; Hanbury, A.; Karimipour, F. Country-wide mobility changes observed using mobile phone data during COVID-19 pandemic. arXiv 2020, arXiv:2008.10064. [Google Scholar]
- Green, J. Location Data in Action: Heatmaps Help Track COVID-19 Across the Globe. 2020. Available online: https://xmode.io/location-data-in-action-heatmaps-help-track-coronavirus-across-the-globe/ (accessed on 25 November 2020).
- Wisniewska, A.; Ehrenberg-Shannon, B.; Britain on the Move even before Johnson Eased Lockdown, Data Show. 12 May 2020. Available online: https://www.ft.com/content/cc70d690-99a6-4056-9ebe-d0b39c40a359 (accessed on 25 November 2020).
- Yle. Saariston mökkikauden Avaus Aikaistui Koronan Takia—Kustavin Kunnanjohtaja: “Melko Runsaasta määrästä ihmisiä on kysymys.” 2020. Available online: https://yle.fi/uutiset/3-11271741 (accessed on 16 November 2020).
- Schier, M.; Hilti, N.; Schad, H.; Tippel, C.; Dittrich-Wesbuer, A.; Monz, A. Residential Multi-Locality Studies—The Added Value for Research on Families and Second Homes. Tijdschr. Voor Econ. En Soc. Geogr. 2015, 106, 439–452. [Google Scholar] [CrossRef]
- Wind, B.; Dewilde, C.; Doling, J. Secondary property ownership in Europe: Contributing to asset-based welfare strategies and the ‘really big trade-off. ’ Int. J. Hous. Policy 2020, 20, 25–52. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.-S.; Hong, H.; Kubik, J.; Thompson, J. When Real Estate is the Only Game in Town; National Bureau of Economic Research: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Huang, Y.; Yi, D.; Clark, W.A.V. Multiple home ownership in Chinese cities: An institutional and cultural perspective. Cities 2020, 97, 102518. [Google Scholar] [CrossRef]
- Stiman, M. Second homes in the city and the country: A reappraisal of vacation homes in the twenty-first century. Int. J. Hous. Policy 2020, 20, 53–74. [Google Scholar] [CrossRef]
- Brunetti, M.; Torricelli, C. Second homes in Italy: Every household’s dream or (un)profitable investments? Hous. Stud. 2017, 32, 168–185. [Google Scholar] [CrossRef]
- Adamiak, C.; Pitkänen, K.; Lehtonen, O. Seasonal residence and counterurbanization: The role of second homes in population redistribution in Finland. GeoJournal 2017, 82, 1035–1050. [Google Scholar] [CrossRef]
- Back, A.; Marjavaara, R. Mapping an invisible population: The uneven geography of second-home tourism. Tour. Geogr. 2017, 19, 595–611. [Google Scholar] [CrossRef]
- Silm, S.; Ahas, R. The Seasonal Variability of Population in Estonian Municipalities. Environ. Plan. A Econ. Space 2010, 42, 2527–2546. [Google Scholar] [CrossRef]
- Müller, D.K. Second Homes in the Nordic Countries: Between Common Heritage and Exclusive Commodity. Scand. J. Hosp. Tour. 2007, 7, 193–201. [Google Scholar] [CrossRef]
- Statistics Finland. Kesämökit 2019. 2019. Available online: https://www.stat.fi/til/rakke/2019/rakke_2019_2020-05-27_kat_001_fi.html (accessed on 11 November 2020).
- SYKE. Elinvoimainen ja kestävä Monipaikkainen Suomi. 2021. Available online: https://www.syke.fi/fi-FI/Tutkimus__kehittaminen/Tutkimus_ja_kehittamishankkeet/Hankkeet/Elinvoimainen_ja_kestava_monipaikkainen_Suomi_VN_TEAS_Monipaikkaisuus (accessed on 22 January 2021).
- WHO. Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 1 November 2020).
- Finnish Government. Movement Restrictions to Uusimaa—the Government Decided on Further Measures to Prevent the Spread of the Coronavirus Epidemic. 2020. Available online: https://valtioneuvosto.fi/en/-//10616/uudellemaalle-liikkumisrajoituksia-hallitus-paatti-uusista-lisatoimista-koronaepidemian-leviamisen-estamiseksi (accessed on 1 November 2020).
- Yle. Poll: Solid Support for Continued Telecommuting Post-Pandemic. 2020. Available online: https://yle.fi/uutiset/osasto/news/poll_solid_support_for_continued_telecommuting_post-pandemic/11293365 (accessed on 22 January 2021).
- Wang, Z.; He, S.Y.; Leung, Y. Applying mobile phone data to travel behaviour research: A literature review. Travel Behav. Soc. 2018, 11, 141–155. [Google Scholar] [CrossRef]
- Silm, S.; Järv, O.; Masso, A. Tracing human mobilities through mobile phones. In Handbook of Research Methods and Applications for Mobilities; Büscher, M., Freudendal-Pedersen, M., Kesselring, S., Kristensen, N.G., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 182–192. [Google Scholar] [CrossRef]
- Louail, T.; Lenormand, M.; Cantu Ros, O.G.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Barthelemy, M. From mobile phone data to the spatial structure of cities. Sci. Rep. 2014, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Järv, O.; Tenkanen, H.; Salonen, M.; Ahas, R.; Toivonen, T. Dynamic cities: Location-based accessibility modelling as a function of time. Appl. Geogr. 2018, 95, 101–110. [Google Scholar] [CrossRef]
- Novak, J.; Ahas, R.; Aasa, A.; Silm, S. Application of mobile phone location data in mapping of commuting patterns and functional regionalization: A pilot study of Estonia. J. Maps 2013, 9, 10–15. [Google Scholar] [CrossRef]
- Järv, O.; Müürisepp, K.; Ahas, R.; Derudder, B.; Witlox, F. Ethnic differences in activity spaces as a characteristic of segregation: A study based on mobile phone usage in Tallinn, Estonia. Urban Stud. 2015, 52, 2680–2698. [Google Scholar] [CrossRef]
- Wesolowski, A.; Buckee, C.O.; Engø-Monsen, K.; Metcalf, C.J.E. Connecting mobility to infectious diseases: The promise and limits of mobile phone data. J. Infect. Dis. 2016, 214 (Suppl. S4), S414–S420. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, B.; Neutens, T.; Lefebvre, W.; Seynaeve, G.; Vanpoucke, C.; Beckx, C.; Van de Weghe, N. Dynamic assessment of exposure to air pollution using mobile phone data. Int. J. Health Geogr. 2016, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Cinnamon, J.; Jones, S.K.; Adger, W.N. Evidence and future potential of mobile phone data for disease disaster management. Geoforum 2016, 75, 253–264. [Google Scholar] [CrossRef]
- Järv, O.; Ahas, R.; Witlox, F. Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transp. Res. Part C Emerg. Technol. 2014, 38, 122–135. [Google Scholar] [CrossRef]
- Jiang, S.; Ferreira, J.; Gonzalez, M.C. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Trans. Big Data 2016, 3, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Järv, O.; Tominga, A.; Müürisepp, K.; Silm, S. The impact of COVID-19 on daily lives of transnational people based on smartphone data: Estonians in Finland. J. Locat. Based Serv. 2021. [Google Scholar] [CrossRef]
- Grantz, K.H.; Meredith, H.R.; Cummings, D.A.T.; Metcalf, C.J.E.; Grenfell, B.T.; Giles, J.R.; Wesolowski, A. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Oliver, N.; Oliver, N.; Lepri, B.; Lepri, B.; Sterly, H.; Lambiotte, R.; Vinck, P. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv. 2020, 6, eabc0764. [Google Scholar] [CrossRef]
- Carlitz, R.D.; Makhura, M.N. Life under lockdown: Illustrating tradeoffs in South Africa’s response to COVID-19. World Dev. 2021, 137, 105168. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, R.; Hu, D.; Yue, Y.; Li, Q.; Xia, J. Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: A modelling study using mobile phone data. Lancet Digit. Health 2020, 2, e417–e424. [Google Scholar] [CrossRef]
- Lamb, M.R.; Kandula, S.; Shaman, J. Differential COVID-19 case positivity in New York City neighborhoods: Socioeconomic factors and mobility. Influenza Respir. Viruses 2020. [Google Scholar] [CrossRef]
- Yabe, T.; Tsubouchi, K.; Fujiwara, N.; Wada, T.; Sekimoto, Y.; Ukkusuri, S.V. Non-Compulsory Measures Sufficiently Reduced Human Mobility in Tokyo during the COVID-19 Epidemic. Sci. Rep. 2020, 10, 18053. [Google Scholar] [CrossRef] [PubMed]
- Pepe, E.; Bajardi, P.; Gauvin, L.; Privitera, F.; Lake, B.; Cattuto, C.; Tizzoni, M. COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Sci. Data 2020, 7, 1–7. [Google Scholar] [CrossRef]
- Järv, O.; Tenkanen, H.; Toivonen, T. Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation. Int. J. Geogr. Inf. Sci. 2017, 31, 1630–1651. [Google Scholar] [CrossRef]
- Poom, A.; Järv, O.; Zook, M.; Toivonen, T. COVID-19 is spatial: Ensuring that mobile Big Data is used for social good. Big Data Soc. 2020, 7, 205395172095208. [Google Scholar] [CrossRef]
- Hägerstrand, T. What About People in Regional Science? Pap. Reg. Sci. Assoc. 1970, 24, 7–24. [Google Scholar] [CrossRef]
- Traficom. Matkaviestinverkon Liittymät. 2020. Available online: https://www.traficom.fi/fi/tilastot/matkaviestinverkon-liittymat (accessed on 11 November 2020).
- Huang, X.; Li, Z.; Jiang, Y.; Li, X.; Porter, D. Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS ONE 2020, 15, e0241957. [Google Scholar] [CrossRef]
- Yle. Sales of Holiday Cabins Hit 30-Year High. 2020. Available online: https://yle.fi/uutiset/osasto/news/sales_of_holiday_cabins_hit_30-year_high/11648075 (accessed on 25 November 2020).
- Tranmer, M.; Steel, D.G. Using census data to investigate the causes of the ecological fallacy. Environ. Plan. A 1998, 30, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willberg, E.; Järv, O.; Väisänen, T.; Toivonen, T. Escaping from Cities during the COVID-19 Crisis: Using Mobile Phone Data to Trace Mobility in Finland. ISPRS Int. J. Geo-Inf. 2021, 10, 103. https://doi.org/10.3390/ijgi10020103
Willberg E, Järv O, Väisänen T, Toivonen T. Escaping from Cities during the COVID-19 Crisis: Using Mobile Phone Data to Trace Mobility in Finland. ISPRS International Journal of Geo-Information. 2021; 10(2):103. https://doi.org/10.3390/ijgi10020103
Chicago/Turabian StyleWillberg, Elias, Olle Järv, Tuomas Väisänen, and Tuuli Toivonen. 2021. "Escaping from Cities during the COVID-19 Crisis: Using Mobile Phone Data to Trace Mobility in Finland" ISPRS International Journal of Geo-Information 10, no. 2: 103. https://doi.org/10.3390/ijgi10020103
APA StyleWillberg, E., Järv, O., Väisänen, T., & Toivonen, T. (2021). Escaping from Cities during the COVID-19 Crisis: Using Mobile Phone Data to Trace Mobility in Finland. ISPRS International Journal of Geo-Information, 10(2), 103. https://doi.org/10.3390/ijgi10020103