Modeling Past, Present, and Future Urban Growth Impacts on Primary Agricultural Land in Greater Irbid Municipality, Jordan Using SLEUTH (1972–2050)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Environmental Settings
2.1.2. History of GIM Evolution
2.2. Land Cover and Urban Data
2.3. Urban Growth Modeling
2.3.1. SLEUTH Inputs and Calibration
2.3.2. SLEUTH-3r Forecasts to 2050
2.4. Land Cover Changes in GIM (1972–2050)
3. Results
3.1. SLEUTH-3r Results
3.2. Land Cover Change Analysis (1972–2050)
3.2.1. 78-year Land Cover Dynamics in GIM
3.2.2. Urban Development Change at District Level (1972–2050)
3.2.3. Agriculture Change at District Level (1972–2050)
4. Discussion
4.1. Agriculture Implications on Food and Food Security
4.2. Implications for Urban Planning in GIM
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Mar López, T.; Aide, T.M.; Thomlinson, J.R. Urban expansion, and the loss of prime agricultural lands in Puerto Rico. Ambio J. Hum. Environ. 2001, 30, 49–54. [Google Scholar] [CrossRef]
- Pribadi, D.; Pauleit, S. The dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy 2005, 48, 13–24. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban expansion and agricultural land loss in China: A multiscale perspective. Sustainability 2016, 8, 790. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economics and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014; Available online: https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.Pdf (accessed on 26 December 2020).
- Foley, J.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, E.F.; Geist, J.; Lepers, E. Dynamic of land-use and land-cover in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.; Güneralp, B.; Hutyra, L. Global Forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhira, H.; Ramachandra, T.; Jagadish, K. Urban Sprawl: Metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geo-Inf. 2004, 5, 29–39. [Google Scholar] [CrossRef]
- Holcombe, R.; Williams, D. Urban sprawl and transportation externalities. Rev. Reg. Stud. 2010, 40, 257–273. [Google Scholar]
- Hamidi, S.; Ewing, R. A longitudinal study of changes in urban sprawl between 2000 and 2010 in the United States. Landsc. Urban. Plan. 2014, 128, 72–82. [Google Scholar] [CrossRef]
- Hart, J. The perimetropolitan Bow wave. Geogr. Rev. 1991, 81, 35–51. [Google Scholar] [CrossRef]
- Jawarneh, N.; Julian, J.; Lookingbill, T. The influence of physiography on historical and future land development changes: A case study of central Arkansas (USA), 1857–2030. Landsc. Urban. Plan. 2015, 143, 76–89. [Google Scholar] [CrossRef]
- Lavy, B.; Julian, J.; Jawarneh, N. The Impact of past and future urban expansion on soil resources in central Arkansas, 1994–2030. Pap. Appl. Geogr. 2016, 2, 25–39. [Google Scholar] [CrossRef]
- Yu, X.; Ng, C. Spatial and temporal dynamics of urban sprawl along two urban-rural transects: A case study of Guangzhou, China. Landsc. Urban. Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multi sensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata. Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Tv, R.; Aithal, B.; Sanna, D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. Geo-Inf. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Losiri, C.; Nagai, M.; Ninsawat, S.; Shrestha, R. Modeling urban expansion in Bankok metropolitan region using demographic-economic data through cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Sustainability 2016, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Zhang, L.; Liu, Y. Measuring sprawl in large Chinese cities along the Yangtze River via combined single and multidimensional metrics. Habitat Int. 2016, 57, 43–52. [Google Scholar] [CrossRef]
- Lizuka, K.; Johnson, B.; Onishi, A.; Magcale-Macandog, D.; Endo, I.; Bragais, M. Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines. Land 2017, 6, 1–21. [Google Scholar]
- Cohen, B. Urban growth in developing countries: A review of current trends and a caution regarding existing forecasts. World Dev. 2004, 32, 23–51. [Google Scholar] [CrossRef]
- Song, W.; Liu, M. Farmland conversion decreases regional and national land quality in China. Land Degrad. Dev. 2016, 28, 459–471. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.; Olejniczak, N. People on the land: Changes in global population and croplands during the 20th century. AMBIO J. Hum. Environ. 2002, 31, 251–257. [Google Scholar] [CrossRef]
- Dietzel, C.; Clarke, K. Toward optimal calibration of the SLEUTH land use change model. Trans. GIS 2007, 11, 29–45. [Google Scholar] [CrossRef]
- Garcia, A.; Sante, I.; Boullon, M.; Crecente, R. A Comparative anaylsis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Comput. Environ. Urban Syst. 2012, 36, 291–301. [Google Scholar] [CrossRef]
- Oguz, H.; Klein, A.G.; Srinivasan, R. Using SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Houston-Galveston-Brazoria CMSA. Res. J. Soc. Sci. 2007, 2, 72–82. [Google Scholar]
- Clarke, K.; Gaydos, L.; Hoppen, S. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Jantz, C.; Goetz, S.; Donato, D.; Claggett, P. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput. Environ. Urban Syst. 2010, 34, 1–16. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Clarke, K. The SLEUTH land use change model: A review. Int. J. Environ. Resour. Res. 2013, 1, 88–105. [Google Scholar]
- Guan, Q.; Clarke, K. A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. Int. J. Geogr. Inf. Sci. 2010, 24, 695–722. [Google Scholar] [CrossRef] [Green Version]
- Clark, K. A decade of cellular urban modeling with SLEUTH: Unresolved issues and problems. In Planning Support Systems for Cities and Regions, 1st ed.; Brail, R., Ed.; The Lincoln Institute of Land Policy: Cambridge, MA, USA, 2008; pp. 47–60. [Google Scholar]
- Yang, X.; Lo, C.P. Modeling urban growth and landscape change in the Atlanta metropolitan area. Int. J. Geogr. Inf. Sci. 2003, 17, 463–488. [Google Scholar] [CrossRef]
- Silva, A.; Clarke, K. Calibration of the SLEUTH urban growth model for Lispon and Porto, Portugal. Comput. Environ. Urban Syst. 2002, 26, 525–552. [Google Scholar] [CrossRef]
- Caglioni, M.; Pelizzoni, M.; Rabino, G. Urban sprawl: A case study for project Gigalopolis using SLEUTH model. Lect. Notes Comput. Sci. 2006, 4173, 436–445. [Google Scholar]
- Martellozzo, F.; Amato, F.; Murgante, B.; Clarke, K. Modelling the impacts of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 2018, 91, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, R.; Mahiny, A.; Khorasani, N.; Darvishefat, A.; Danekar, A. Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities 2009, 26, 19–26. [Google Scholar] [CrossRef]
- Abd-Allah, M. Modelling Urban Dynamics Using Geographic Information Systems, Remote Sensing, and Urban Growth Models. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2007. [Google Scholar]
- Azaz, L. Monitoring, Modelling, and Managing Urban Growth in Alexandria, Egypt Using Remote Sensing and GIS. Ph.D. Thesis, The University of New Castle, New Castle upon Tyne, UK, 2004. [Google Scholar]
- Al-Awadhi, T. Monitoring and modeling urban expansion using GIS & RS: Case study from Muscat, Oman. In Proceedings of the IEEE 2007 Urban Remote Sensing Joint Event, Paris, France, 11–13 April 2007; pp. 1–5. [Google Scholar]
- Al-Shalabi, M.; Billa, L.; Pradhan, B.; Mansor, S.; Sharif, A. Modeling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: The case of Sana’a metropolitan city, Yemen. Environ. Earth Sci. 2012, 70, 425–437. [Google Scholar] [CrossRef]
- UN-FPA, United Nations Population Fund. State of the World Population 2007: Unleashing the Potential of Urban Growth 2007. Available online: https://www.unfpa.org/sites/default/files/pub-pdf/695_filename_sowp2007_eng.pdf (accessed on 15 October 2020).
- United Nations Human Settlements Programme (UN-Habitat). UN-Habitat Global Activities Report: Increasing Synergy for Greater National Ownership 2005. Available online: https://sustainabledevelopment.un.org/content/documents/1726Habitat%20Global%20Activties%202015.pdf (accessed on 2 January 2021).
- United Nations Economic and Social Commission for Western Asia (UN-ESCWA). (2019). Moving towards Water Security in the Arab Region 2019. Available online: https://www.unescwa.org/sites/www.unescwa.org/files/publications/files/moving-towards-achieving-water-security-arab-region-english.pdf (accessed on 11 December 2020).
- Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land Cover mapping analysis and urban growth modeling using remote sensing techniques in Greater Cairo Region-Egypt. ISPRS Int. J. Geo-Inf. 2015, 4, 1750–1769. [Google Scholar] [CrossRef] [Green Version]
- Esmail, M.; Masria, A.; Negm, A. Monitoring land use/land cover changes around Damietta Promontory, Egypt, using RS/GIS. Procedia Eng. 2016, 154, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Jawarneh, N.; Biradar, C. Decadal land cover database for Jordan at 30 m resolution. Arab. J. Geosci. 2017, 10, 483–496. [Google Scholar] [CrossRef]
- Al-Kofahi, S.; Hammouri, N.; Sawalhah, M.; Al-Hammouri, A.; Aukour, F. Assessment of the urban sprawl on agricultural lands of two major municipalities in Jordan using supervised classification techniques. Arab. J. Geosci. 2018, 11, 45. [Google Scholar] [CrossRef]
- Saleh, B.; Al Rawashdeh, S. Study of urban expansion in Jordanian cities using GIS and remote sensing. Intern. J. Appl. Sci. Eng. 2007, 5, 41–52. [Google Scholar]
- Khresat, S.; Al-Bakri, J.; Tahhan, R. Impacts of land use/cover change on soil properties in the Mediterranean region of NorthWestern Jordan. Land Degrad. Dev. 2008, 18, 1–11. [Google Scholar] [CrossRef]
- Al-Bakri, J.; Duqqah, M.; Brewer, T. Application of remote sensing and GIS for modeling and assessment of Land use/cover change in Amman/Jordan. Sci. Res. 2013, 5, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Hjorat, K.; Zakaria, M.; Salah, F. An Introduction to Jordan’s Agriculture Sector and Agricultural Policies. USAID, Amman 1998. Available online: http://www.fao.org/3/ba0007e/ba0007e.pdf (accessed on 18 January 2021).
- Ministry of Planning and International Cooperation. 2017. Available online: http://inform.gov.jo/en-us/By-Date/Report-Details/ArticleId/63/smid/420/ArticleCategory/216/Assessment-of-the-Agricultural-Sector-in-Jordan (accessed on 15 January 2021).
- Al Rawashdeh, S.; Saleh, B. Satellite monitoring of urban spatial growth in the Amman area, Jordan. J. Urban Plan. Dev. 2006, 132, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.; Darmame, K.; Barham, N.; Nortcliff, S. Ever-growing Amman, Jordan: Urban expansion, social polarisation and contemporary urban planning issues. Habitat Int. 2009, 33, 81–92. [Google Scholar] [CrossRef]
- Makhadmeh, Z.; Almanasyeh, N. Analyzing the state and pattern of urban growth and city planning in Amman using satellite images and GIS. Eur. J. Soc. Sci. 2001, 24, 252–264. [Google Scholar]
- Alnsour, J. Managing urban growth in the city of Amman, Jordan. Cities 2016, 50, 93–99. [Google Scholar] [CrossRef]
- Ababsa, M. Municipalities and issue of local governance. In Atlas of Jordan: History, Territories and Society; Presses de l’Ifpo: Beirut, Lebanon, 2013; pp. 374–383. [Google Scholar]
- Stave, S.; Hillesund, S. Impact of Syrian Refugees on the Jordanian Labour Market: Findings from the Governorates of Amman, Irbid and Mafraq; International Labour Office: Geneva, Switzerland, 2015; Available online: https://www.ilo.org/wcmsp5/groups/public/---arabstates/---ro-beirut/documents/publication/wcms_364162.pdf (accessed on 20 October 2020).
- Al-Hashimi, I.; El-Azzawi, A.; El-Kasbi, H. Dynamics of urban growth: Modeling the fractal dimension of the city of Irbid, Jordan. Jordan J. Civ. Eng. 2013, 7, 1–16. [Google Scholar]
- Tarrad, M. Urban planning response to population growth in Jordanian cities (Irbid city as case study). Res. J. Appl. Sci. Eng. Technol. 2014, 7, 4275–4280. [Google Scholar] [CrossRef]
- Al-Kofahi, S.; Jamhawi, M.; Hajahjah, Z. Investigating the current status of geospatial data and urban growth indicators in Jordan and Irbid municipality: Implications for urban and environmental planning. Environ. Dev. Sustain. 2017, 20, 1067–1083. [Google Scholar] [CrossRef]
- Sharieh, A.; Barham, R.; Jaradat, S. Urban sprawl impact on agricultural lands in Irbid City, Jordan. J. Environ. Earth Sci. 2017, 7, 107–118. [Google Scholar]
- Tarawneh, M.; Naamneh, M. Urbanization and social identities in Jordan: The case of Irbid. J. Comp. Fam. Stud. 2011, 42, 615–635. [Google Scholar] [CrossRef]
- Al-Qudah, B. Soils of Jordan. In Soil Resources of Southern and Eastern Mediterranean Countries; Zdruli, P., Steduto, P., Montanarella, L., Eds.; CIHEAM/Istituto Agronomico Mediterraneo di Bari (IAMB): Bari, Italy, 2001; pp. 127–141. [Google Scholar]
- Department of Statistics (DoS). Population Projections for the Kingdom’s Residents during the Period 2015–2050. 2019. Available online: http://www.dos.gov.jo/dos_home_e/main/Demograghy/2017/POP_PROJECTIONS(2015–2050).pdf (accessed on 20 November 2019).
- Al-Huseini, J. The evolution of the Palestinian refugee camps in Jordan. between logics of exclusion and integration. In Cities, Urban Practices and Nation Building in Jordan; Ababsa, M., Daher, R., Eds.; Presses de L’lfpo: Beirut, Lebanon, 2011; pp. 181–204. [Google Scholar]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- World Bank. World Development indicators. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 8 March 2021).
- Food and Agriculture Organization of the United States. Country Profile. Available online: http://www.fao.org/countryprofiles/index/en/?iso3=JOR (accessed on 8 March 2021).
- Rajsekhar, D.; Gorelick, S. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow. Sci. Adv. 2017, 3, e1700581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bakri, J.; Salahat, M.; Suleiman, A.; Suifan, M.; Hamdan, M.; Khresat, S.; Kandakji, T. Impact of climate and land use changes on water and food security in Jordan: Implications for transcending “The tragedy of the Commons”. Sustainability 2013, 5, 724–748. [Google Scholar] [CrossRef] [Green Version]
- United Nations World Food Program Mobile Vulnerability Assessment and Mapping (mVAM) July/August 2020. Jordan Food Security Update- Implications of COVID-19. Available online: https://www.wfp.org/publications/jordan-food-security-update-implications-covid-19-july-aug-2020 (accessed on 7 March 2021).
- Note, A. The Role of Food and Agriculture for Jop Creation and Poverty Reduction in Jordan and Lebanon. World Bank Agricultural Sector Note(p166455) 2018. Available online: http://documents1.worldbank.org/curated/ar/325551536597194695/pdf/Agricultural-Sector-Note-Jordan-and-Lebanon.pdf (accessed on 7 March 2021).
- Jordan Investment Commission (JIC). Agriculture Sector Profile 2017. Available online: https://www.jic.gov.jo/wp-content/uploads/2018/07/Sector-Profile-Agriculture-Final-Mar-2018-JIC-HAS-020418–1.pdf (accessed on 8 March 2021).
- OECD/FAO. OECD-FAO Agricultural Outlook 2018–2027; OECD/FAO Publishing: Rome, Italy, 2018. Available online: http://www.fao.org/documents/card/en/c/I9166EN (accessed on 9 March 2021).
- Department of Statistics (DoS). Household Expenditures & Income Survey. Available online: http://dosweb.dos.gov.jo/economic/expenditures-income/expend_tables/ (accessed on 26 December 2020).
- World Bank. Jordan Housing Sector Review Report P158331. 2018. Available online: http://documents1.worldbank.org/curated/en/855101555960778525/pdf/Jordan-Housing-Sector-Assessment-Housing-Sector-Review.pdf (accessed on 8 March 2021).
- Simpson, C.; Abo Zayed, A. New Faces, Less Water, and a Changing Economy in a Growing City: A Case Study of Refugees in Towns, Irbid, Jordan. Available online: https://www.refugeesintowns.org/irbid (accessed on 11 November 2020).
Path/Row | Landsat Sensor | Acquisition Date | Cloud Coverage % |
---|---|---|---|
172/37 | TM5 & OLI | June 1984; March 1991; April 1998; April 2014 | 0.0; 0.0; 0.0; 0.0 |
172/38 | TM5 & OLI | April 1984, February 1991; March 1998; April 2014 | 0.0; 0.0; 0.0; 0.0 |
172/39 | TM5 & OLI | June 1984; March 1991; April 1998; April 2014 | 0.0; 0.0; 0.0; 0.1 |
173/37 | TM5 & OLI | April 1984, February 1991; March 1998; April 2014 | 10; 10; 20; 0.0 |
173/38 | TM5 & OLI | August 1984; March 1991; May 1998; April 2014 | 0.0; 0.0; 0.0; 0.0 |
173/39 | TM5 & OLI | April 1989; February 1991; March 1998; April 2014 | 0.0; 0.0; 0.0; 0.0 |
173/40 | TM5 & OLI | April 1984; February 1991; March 1998; April 2014 | 0.0; 0.0; 0.0; 0.0 |
174/37 | TM5 & OLI | April 1984; March 1991; April 1998; April 2014 | 60 *; 10; 0.0; 0.8 |
174/38 | TM5 & OLI | April 1984; March 1991; April 1998; April 2014 | 40 *; 30 *; 0.0; 0.2 |
174/39 | TM5 & OLI | April 1984; February 1991; April 1998; April 2014 | 10; 0.0; 0.0; 0.0 |
174/40 | TM5 & OLI | April 1984; February 1991; April 1998; April 2014 | 10; 0.0; 0.0; 0.0 |
Inclusive Land Cover Classes | |||
---|---|---|---|
Land Cover | Definition | JNLCD | Al-Kofahi et al.’s |
Built-up areas | High, medium, low intensity developed areas, areas with a mixture of constructed materials and vegetation. Generally, impervious surfaces account for 20% to 100% of the total cover. | Urban | Urban area |
Sparsely vegetated/Barren | Open rangelands, non-cultivated areas, dwarf shrubs, bare soils, sands, quarries, mud flat, and wadi deposits. Generally, areas with vegetation accounts for less than 10% of total cover. | Sparsely vegetated/Barren | Open land |
Agricultural land | Rainfed areas cultivated with field crops (wheat and barley), fallow lands; Trees (mainly olive trees and fruit trees); and Vegetables crops, orchards grown under permanent irrigation infrastructure and greenhouses. | Rainfed croplands, orchards, and irrigated agriculture | Green space |
Input | Data Source |
---|---|
Slope, Hillshade | Derived from ASTER GDEM V2. Retrieved from: https://earthexplorer.usgs.gov/ (accessed on 3 June 2017) |
Exclusion | Derived from GIM’s zoning layer. |
1972 Urban extent | Derived from Landsat MSS scene. |
1980s, 2000s, & 2015s Urban extents | Derived from the JNLCD product. |
1972 primary roads network | Derived from Landsat MSS scene. |
1980 primary roads network | Derived from high-resolution topographic map. Retrieved from: https://daahl.ucsd.edu/DAAHL/ (accessed on 1 June 2017) |
2000 and 20,151 primary roads networks | Derived from GoogleEarth® |
Parameter/Growth Coefficient | Count/Score |
---|---|
Compare r2 | 0.98 |
Cluster r2 | 0.84 |
2015 pixels | 109,880 |
2015 simulated pixels | 108,030 |
2015 clusters | 275 |
2015 simulated clusters | 203 |
Diffusion | 25 |
Breed | 25 |
Spread | 75 |
Slope | 25 |
Roads gravity | 75 |
1972 | 1980 | 1990 | 2000 | 2015 | 2050 | 1972–2050 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Cover | Area | Change 1972–1980 | Area | Change 1980–1990 | Area | Change 1990–2000 | Area | Change 2000–2015 | Area | Change 2015–2050 | Area | % of 2050 Area | 78-year Change (%) |
Built-up areas | 29.2 | 3.2 | 32.4 | 9.7 | 42.1 | 28.9 | 71 | 29.4 | 100.4 | 6.6 | 107 | 33 | 77.8 (72.7%) |
Agricultural land | 178.2 | 3.2 | 181.4 | 19.5 | 200.9 | 6.1 | 207 | −12.4 | 194.6 | −6.6 | 188 | 58 | 9.8 (5.2%) |
Sparsely vegetated/Barren | 116.6 | −6.6 | 110.2 | −29.2 | 81.0 | −36.0 | 45 | −16.0 | 29.0 | 0.0 | 29 | 9 | −87.6 (−302%) |
Population | 112,864 | 120,000 | 283,716 | 370,998 | 535,199 | 1,219,055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawarneh, R.N. Modeling Past, Present, and Future Urban Growth Impacts on Primary Agricultural Land in Greater Irbid Municipality, Jordan Using SLEUTH (1972–2050). ISPRS Int. J. Geo-Inf. 2021, 10, 212. https://doi.org/10.3390/ijgi10040212
Jawarneh RN. Modeling Past, Present, and Future Urban Growth Impacts on Primary Agricultural Land in Greater Irbid Municipality, Jordan Using SLEUTH (1972–2050). ISPRS International Journal of Geo-Information. 2021; 10(4):212. https://doi.org/10.3390/ijgi10040212
Chicago/Turabian StyleJawarneh, Rana N. 2021. "Modeling Past, Present, and Future Urban Growth Impacts on Primary Agricultural Land in Greater Irbid Municipality, Jordan Using SLEUTH (1972–2050)" ISPRS International Journal of Geo-Information 10, no. 4: 212. https://doi.org/10.3390/ijgi10040212