Risk Assessment of Population Loss Posed by Earthquake-Landslide-Debris Flow Disaster Chain: A Case Study in Wenchuan, China
Abstract
:1. Introduction
2. Study Area and Materials
3. Methods
3.1. Risk Assessment Method for Disaster Chain
3.2. Hazard Model for a Seismic Landslide-Generated Debris Flow
3.2.1. Method for Delimiting the Hazard Area of the Debris Flow
3.2.2. Hazard Assessment of Seismic Landslide-Generated Debris Flow
3.3. Spatial Statistical and Analysis Methods
4. Results
4.1. Debris-Flow Hazards in Wenchuan
4.1.1. Classification and Weighting of the Debris Flow Factors
4.1.2. Debris Flow Hazard Analysis
4.2. Risk of Population Loss Due to the Disaster Chain in Wenchuan County
4.2.1. Risk of Earthquake-Landslide-Debris Flow Disaster Chain
4.2.2. Population Loss Risk Posed by Each Element of the Disaster Chain
4.3. Verification of the Risk Assessment Results
5. Discussion
5.1. Reliability of Population Risk for the Disaster Chain
5.2. Limitations on Hazard Assessment of Debris Flows
5.3. Uncertainties in the Vulnerability Curves or Indices
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, P.J.; Blauhut, V.; Bloemendaal, N.; Daniell, J.E.; De Ruiter, M.C.; Duncan, M.J.; Emberson, R.; Jenkins, S.F.; Kirschbaum, D.; Kunz, M.; et al. Review article: Natural hazard risk assessments at the global scale. Nat. Hazards Earth Syst. Sci. 2020, 20, 1069–1096. [Google Scholar] [CrossRef] [Green Version]
- Mazzorana, B.; Simoni, S.; Scherer, C.; Gems, B.; Fuchs, S.; Keiler, M. A physical approach on flood risk vulnerability of buildings. Hydrol. Earth Syst. Sci. 2014, 18, 3817–3836. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Huning, L.S.; Chiang, F.; Sadegh, M.; Vahedifard, F.; Mazdiyasni, O.; Moftakhari, H.; Mallakpour, I. How do natural hazards cascade to cause disasters? Nat. Cell Biol. 2018, 561, 458–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. 2015. Available online: https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (accessed on 15 May 2020).
- IRGC. Risk Governance: Towards an Integrative Approach; White Paper No. 1; IRGC: Geneva, Switzerland, 2005. [Google Scholar]
- Zhang, Y.; Weng, W. A Bayesian Network Model for Seismic Risk Analysis. Risk Anal. 2021. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; Van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef] [Green Version]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Dowling, C.A.; Santi, P.M. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 2014, 71, 203–227. [Google Scholar] [CrossRef]
- Khan, A.; Gupta, S.; Gupta, S.K. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. Int. J. Disaster Risk Reduct. 2020, 47, 101642. [Google Scholar] [CrossRef]
- Institute of Engineering Mechanics, CEA; Institute of Geophysics, CEA. The Chinese Seismic Intensity Scale; GB/T 17742-2008; Standards Press of China: Beijing, China, 2008; Volume 8. [Google Scholar]
- Lekkas, E.L. The 12 May 2008 Mw 7.9 Wenchuan, China, Earthquake: Macroseismic Intensity Assessment Using the EMS-98 and ESI 2007 Scales and Their Correlation with the Geological Structure. Bull. Seism. Soc. Am. 2010, 100, 2791–2804. [Google Scholar] [CrossRef]
- Lekkas, E. Macroseismicity and geological effects of the Wenchuan earthquake (MS 8.0R-12 May 2008), Sichuan, China: Macro-distribution and comparison of EMS1998 and ESI2007 intensities. Bull. Geol. Soc. Greece 2017, 43, 1361. [Google Scholar] [CrossRef] [Green Version]
- Grünthal, G. European Macroseismic Scale 1998; Notebooks of the European Center for Geodynamics and Seismology; Council of Europe: Strasbourg, France, 1998. [Google Scholar]
- Michetti, A.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.; et al. Environmental seismic intensity scale-ESI 2007. In Memorie Descrittive della Carta Geologica d’Italia; Guerrieri, L., Vittori, E., Eds.; Servizio Geologico d’Italia—Dipartimento Difesa del Suolo: APAT, Roma, Italy, 2007; Volume 74, pp. 7–54. [Google Scholar]
- Zhang, Z.; Walter, F.; McArdell, B.W.; Wenner, M.; Chmiel, M.; De Haas, T.; He, S. Insights from the Particle Impact Model into the High-Frequency Seismic Signature of Debris Flows. Geophys. Res. Lett. 2021, 48, 2020–088994. [Google Scholar] [CrossRef]
- Fan, X.; Juang, C.H.; Wasowski, J.; Huang, R.; Xu, Q.; Scaringi, G.; van Westen, C.J.; Havenith, H.-B. What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges. Eng. Geol. 2018, 241, 25–32. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Ye, T.; Wang, Y.; Zhou, T.; Xu, W.; Du, J.; Wang, J.; Li, N.; Huang, C.; Liu, L.; et al. Disaster Risk Science: A Geographical Perspective and a Research Framework. Int. J. Disaster Risk Sci. 2020, 11, 426–440. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Q.; Liu, L.; Tang, H.; Liu, T. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography. ISPRS Int. J. Geo-Inf. 2014, 3, 368–390. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhang, J.; Zhang, Y.; Ma, Q.; Alu, S.; Lang, Q. Hazard Assessment of Earthquake Disaster Chains Based on a Bayesian Network Model and ArcGIS. ISPRS Int. J. Geo-Inf. 2019, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Shieh, C.-F.; Sheu, S.-Y.; Shih, R.-C. Correlation between surface damage and the coseismic displacement and stress relaxation of the 1999 Chi-Chi, Taiwan Earthquake. Geophys. Res. Lett. 2001, 28, 3381–3384. [Google Scholar] [CrossRef]
- King, T.R.; Quigley, M.C.; Clark, D. Earthquake environmental effects produced by the Mw 6.1, 20th May 2016 Petermann earthquake, Australia. Tectonophysics 2018, 747–748, 357–372. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; He, S. Modeling the landslide-generated debris flow from formation to propagation and run-out by considering the effect of vegetation. Landslides 2021, 18, 43–58. [Google Scholar] [CrossRef]
- Ni, H.; Tang, C.; Zheng, W.; Xu, R.; Tian, K.; Xu, W. An Overview of Formation Mechanism and Disaster Characteristics of Post-seismic Debris Flows Triggered by Subsequent Rainstorms in Wenchuan Earthquake Extremely Stricken Areas. Acta Geol. Sin. 2014, 88, 1310–1328. [Google Scholar] [CrossRef]
- Sharma, K.; Saraf, A.K.; Das, J.; Baral, S.S.; Borgohain, S.; Singh, G. Mapping and Change Detection Study of Nepal-2015 Earthquake Induced Landslides. J. Indian Soc. Remote Sens. 2017, 46, 605–615. [Google Scholar] [CrossRef]
- Serey, A.; Piñero-Feliciangeli, L.; Sepúlveda, S.A.; Poblete, F.; Petley, D.N.; Murphy, W. Landslides induced by the 2010 Chile megathrust earthquake: A comprehensive inventory and correlations with geological and seismic factors. Landslides 2019, 16, 1153–1165. [Google Scholar] [CrossRef]
- Yagi, H.; Sato, G.; Higaki, D.; Yamamoto, M.; Yamasaki, T. Distribution and characteristics of landslides induced by the Iwate–Miyagi Nairiku Earthquake in 2008 in Tohoku District, Northeast Japan. Landslides 2009, 6, 335–344. [Google Scholar] [CrossRef]
- Cui, P.; He, S.M.; Yao, L.K.; Wang, Z.Y.; Chen, X.Q. Formation Mechanism and Risk Control of Geo-Disasters in Wenchuan Earthquake; Science Press: Beijing, China, 2011. [Google Scholar]
- Zhang, S.; Li, C.; Zhang, L.; Peng, M.; Zhan, L.; Xu, Q. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network. Eng. Geol. 2020, 265, 105436. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, S.; Li, W. Spatial distribution of large-scale landslides induced by the 5.12 Wenchuan Earthquake. J. Mt. Sci. 2011, 8, 246–260. [Google Scholar] [CrossRef]
- Marc, O.; Hovius, N.; Meunier, P.; Uchida, T.; Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 2015, 43, 883–886. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, C.; Chen, M.; Zhang, X.; Shi, Q.; Gong, L. Activity characteristics and enlightenment of the debris flow triggered by the rainstorm on 20 August 2019 in Wenchuan County, China. Bull. Int. Assoc. Eng. Geol. 2021, 80, 873–888. [Google Scholar] [CrossRef]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method. ISPRS Int. J. Geo-Inf. 2014, 3, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Matcham, I.; Reese, S.; King, A.; Bell, R.; Henderson, R.; Smart, G.; Cousins, J.; Smith, W.; Heron, D. Quantitative multi-risk analysis for natural hazards: A framework for multi-risk modelling. Nat. Hazards 2011, 58, 1169–1192. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Maskrey, A. Revisiting community-based disaster risk management. Environ. Hazards 2011, 10, 42–52. [Google Scholar] [CrossRef]
- Korswagen, P.; Jonkman, S.; Terwel, K. Probabilistic assessment of structural damage from coupled multi-hazards. Struct. Saf. 2019, 76, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.-J.; Wang, X.; Yuan, Y. Risk assessment of disaster chain: Experience from Wenchuan earthquake-induced landslides in China. J. Mt. Sci. 2015, 12, 1169–1180. [Google Scholar] [CrossRef]
- Wu, S.H.; Liu, Y.H.; Yue, X.L. Risk Identification and Assessment of Seismic Geological Disaster Chain; Science Press: Beijing, China, 2020. [Google Scholar]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice (No. 3); UNESCO: Paris, France, 1984. [Google Scholar]
- Zhou, J.-W.; Cui, P.; Yang, X.-G. Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake. J. Asian Earth Sci. 2013, 76, 70–84. [Google Scholar] [CrossRef]
- Chang, M.; Tang, C.; Van Asch, T.W.J.; Cai, F. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China. Landslides 2017, 14, 1783–1792. [Google Scholar] [CrossRef]
- Gao, J.; Sang, Y. Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China. Int. J. Disaster Risk Reduct. 2017, 25, 60–71. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Weng, W. A review of the research into the relations between hazards in multi-hazard risk analysis. Nat. Hazards 2020, 104, 2003–2026. [Google Scholar] [CrossRef]
- Scheidl, C.; Rickenmann, D. Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf. Process. Landf. 2009, 35, 157–173. [Google Scholar] [CrossRef]
- Zhou, W.; Fang, J.; Tang, C.; Yang, G. Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan earthquake zone. J. Hydrol. 2019, 577, 123932. [Google Scholar] [CrossRef]
- Department of Soil and Water Conservation. Classification and Gradation Standard of Soil Erosion; SL 190-2007, 26P; A25; China Water&Power Press: Beijing, China, 2008. [Google Scholar]
- Xu, Y.; Xu, X.; Tang, Q. Human activity intensity of land surface: Concept, methods and application in China. J. Geogr. Sci. 2016, 26, 1349–1361. [Google Scholar] [CrossRef]
- Wu, S.; Jin, J.; Pan, T. Empirical seismic vulnerability curve for mortality: Case study of China. Nat. Hazards 2015, 77, 645–662. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y.; Liu, T.; Zhu, Y.; Sui, Q. The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China. Int. J. Environ. Res. Public Health 2017, 14, 212. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Tang, C.; Huang, T.; Gao, Z. Dynamic Vulnerability Analysis of Mountain Settlements Exposed to Geological Hazards: A Case Study of the Upper Min River, China. Adv. Civ. Eng. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Yue, X.; Wu, S.; Yin, Y.; Gao, J.; Zheng, J. Risk Identification of Seismic Landslides by Joint Newmark and RockFall Analyst Models: A Case Study of Roads Affected by the Jiuzhaigou Earthquake. Int. J. Disaster Risk Sci. 2018, 9, 392–406. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liu, L.; Gao, J.; Wang, W. Integrate Risk from Climate Change in China Under Global Warming of 1.5 and 2.0 °C. Earth’s Futur. 2019, 7, 1307–1322. [Google Scholar] [CrossRef] [Green Version]
- Zou, Q.; Cui, P.; Zeng, C.; Tang, J.; Regmi, A.D. Dynamic process-based risk assessment of debris flow on a local scale. Phys. Geogr. 2016, 37, 132–152. [Google Scholar] [CrossRef]
- Fang, Q.; Tang, C.; Chen, Z.; Wang, S.; Yang, T. A calculation method for predicting the runout volume of dam-break and non-dam-break debris flows in the Wenchuan earthquake area. Geomorphology 2019, 327, 201–214. [Google Scholar] [CrossRef]
- Li, L.; Yu, B.; Zhu, Y.; Chu, S.; Wu, Y. Topographical factors in the formation of gully-type debris flows in Longxi River catchment, Sichuan, China. Environ. Earth Sci. 2014, 73, 4385–4398. [Google Scholar] [CrossRef]
- Basu, M. Gaussian-based edge-detection methods-a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2002, 32, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Wang, N. Prediction and Evaluation on Deposited Volume of Debris-Flow in Wenchuan Earthquake Area; Chengdu University of Technology: Chengdu, China, 2015. [Google Scholar]
- Li, M.; Tian, C.-S.; Wang, Y.-K.; Liu, Q.; Lu, Y.-F.; Shan, W. Impacts of future climate change (2030–2059) on debris flow hazard: A case study in the Upper Minjiang River basin, China. J. Mt. Sci. 2018, 15, 1836–1850. [Google Scholar] [CrossRef]
- Niu, Q.; Cheng, W.; Liu, Y.; Xie, Y.; Lan, H.; Cao, Y. Risk assessment of secondary geological disasters induced by the Yushu earthquake. J. Mt. Sci. 2012, 9, 232–242. [Google Scholar] [CrossRef]
- Ji, F.; Dai, Z.; Li, R. A multivariate statistical method for susceptibility analysis of debris flow in southwestern China. Nat. Hazards Earth Syst. Sci. 2020, 20, 1321–1334. [Google Scholar] [CrossRef]
- Wu, S.; Chen, J.; Xu, C.; Zhou, W.; Yao, L.; Yue, W.; Cui, Z. Susceptibility Assessments and Validations of Debris-Flow Events in Meizoseismal Areas: Case Study in China’s Longxi River Watershed. Nat. Hazards Rev. 2020, 21, 05019005. [Google Scholar] [CrossRef]
- Cui, P.; Hu, K.; Zhuang, J.; Yang, Y.; Zhang, J. Prediction of debris-flow danger area by combining hydrological and inundation simulation methods. J. Mt. Sci. 2011, 8, 1–9. [Google Scholar] [CrossRef]
- Hu, T.; Huang, R.-Q. A catastrophic debris flow in the Wenchuan Earthquake area, July 2013: Characteristics, formation, and risk reduction. J. Mt. Sci. 2017, 14, 15–30. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Li, W.L.; Liang, J.T. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull. Int. Assoc. Eng. Geol. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides 2014, 11, 877–887. [Google Scholar] [CrossRef]
- Huang, H.; Yang, S.; Liu, J.; Yang, D.; Tian, Y. A study on the forecast calculating method of the density of rainfall debris flow in Southwestern of China. Arab. J. Geosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Long, K.; Zhang, S.; Wei, F.; Hu, K.; Zhang, Q.; Luo, Y. A hydrology-process based method for correlating debris flow density to rainfall parameters and its application on debris flow prediction. J. Hydrol. 2020, 589, 125124. [Google Scholar] [CrossRef]
- Tang, C.; Westen, C. Atlas of Wenchuan-Earthquake Geohazards; Science Press: Beijing, China, 2018. [Google Scholar]
- China Institute of Water Resources and Hydropower Research. The Massive Debris Flow on 20 August 2019 in Wenchuan County, Sichuan Province. 2021. Available online: http://www.qgshzh.com/ffpindex?newstype=1 (accessed on 4 August 2020).
- China Association for Disaster Prevention. Disaster Memorabilia in China; Seismological Press: Beijing, China, 2008. [Google Scholar]
- Wasowski, J.; McSaveney, M.; Pisano, L.; Del Gaudio, V.; Li, Y.; Hu, W. Recurrent rock avalanches progressively dismantle a mountain ridge in Beichuan County, Sichuan, most recently in the 2008 Wenchuan earthquake. Geomorphology 2021, 374, 107492. [Google Scholar] [CrossRef]
- Xia, C.H.; Zhu, J.; Chang, M.; Yang, Y. Susceptibility assessment of debris flow using a probabilistic and GIS approach: A case study on the Wenchuan county. J. Yangtze River Sci. Res. Inst. 2017, 34, 34–38. (In Chinese) [Google Scholar]
- Li, S.; Chen, Y.; Yu, T. Comparison of macroseismic-intensity scales by considering empirical observations of structural seismic damage. Earthq. Spectra 2021, 37, 449–485. [Google Scholar] [CrossRef]
- Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale. Pure Appl. Geophys. 2016, 173, 1479–1515. [Google Scholar] [CrossRef]
- Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthq. Spectra 1999, 15, 557–564. [Google Scholar] [CrossRef]
- Sokolov, V.; Furumura, T.; Wenzel, F. On the use of JMA intensity in earthquake early warning systems. Bull. Earthq. Eng. 2010, 8, 767–786. [Google Scholar] [CrossRef]
- Naik, S.P.; Mohanty, A.; Porfido, S.; Tuttle, M.; Gwon, O.; Kim, Y.-S. Intensity estimation for the 2001 Bhuj earthquake, India on ESI-07 scale and comparison with historical 16th June 1819 Allah Bund earthquake: A test of ESI-07 application for intraplate earthquakes. Quat. Int. 2020, 536, 127–143. [Google Scholar] [CrossRef]
- Liu, K.-F.; Li, H.-C.; Hsu, Y.-C. Debris flow hazard assessment with numerical simulation. Nat. Hazards 2008, 49, 137–161. [Google Scholar] [CrossRef]
- Li, T.-T.; Huang, R.-Q.; Pei, X.-J. Variability in rainfall threshold for debris flow after Wenchuan earthquake in Gaochuan River watershed, Southwest China. Nat. Hazards 2016, 82, 1967–1980. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Chang, M.; Ding, J.; Qi, X. An empirical–statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quat. Int. 2012, 250, 63–73. [Google Scholar] [CrossRef]
- Van Asch, T.W.J.; Tang, C.; Alkema, D.; Zhu, J.; Zhou, W. An integrated model to assess critical rainfall thresholds for run-out distances of debris flows. Nat. Hazards 2013, 70, 299–311. [Google Scholar] [CrossRef]
- Ding, M.; Tang, C.; Miao, C. Response analysis of valley settlements to the evolution of debris flow fans under different topographic conditions: A case study of the upper reaches of Min River, China. Bull. Int. Assoc. Eng. Geol. 2019, 79, 1639–1650. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Zhao, W.; Li, Y.; You, Y. Characteristics of a Debris-Flow Drainage Channel with a Step-Pool Configuration. J. Hydraul. Eng. 2017, 143, 04017038. [Google Scholar] [CrossRef]
- Song, S.W. Analysis and Investigation on Seismic Damages of Projects Subjected to Wenchuan; Science Press: Beijing, China, 2009. [Google Scholar]
- Pollock, W.; Wartman, J. Human Vulnerability to Landslides. GeoHealth 2020, 4, e2020GH000287. [Google Scholar] [CrossRef]
- Totschnig, R.; Fuchs, S. Mountain torrents: Quantifying vulnerability and assessing uncertainties. Eng. Geol. 2013, 155, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, S.; Keiler, M.; Ortlepp, R.; Schinke, R.; Papathoma-Köhle, M. Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. J. Hydrol. 2019, 575, 587–595. [Google Scholar] [CrossRef]
- Ding, M.; Huang, T. Vulnerability assessment of population in mountain settlements exposed to debris flow: A case study on Qipan gully, Wenchuan County, China. Nat. Hazards 2019, 99, 553–569. [Google Scholar] [CrossRef]
Data Type | Content | Description | Sources |
---|---|---|---|
Geographical data | DEM (Digital Elevation Model) | 30 m × 30 m grid data | DEM ASTGTM |
Relief degree of land surface | 1 km × 1 km grid data | National Earth System Science Data Center | |
Spatial distribution of population | 1 km × 1 km grid data (2015) | Resource and Environment Science and Data Center | |
1:5,000,000 geologic map | Geological group and lithology | China Geological Survey | |
Soil erosion and water erosion | 300 m × 300 m grid data (2015) | National Tibetan Plateau Data Center | |
NDVI | 1 km × 1 km grid data (2015) | Resource and Environment Science and Data Center | |
FVC | 1 km × 1 km grid data (2015) | National Earth System Science Data Center | |
Fault | Fault distribution | China Earthquake Administration | |
Human activity index | Index based on land-use change | National Earth System Science Data Center | |
Disaster data | Earthquake intensity | Spatial distribution of intensity of Wenchuan Ms8.0 Earthquake | China Earthquake Administration |
Disaster distribution | Locations of landslide and debris flow points | National Earth System Science Data Center | |
Disaster loss | Population loss in Wenchuan Ms8.0 earthquake and several geological disaster points | Statistical Yearbook, Materials, data from reports | |
Statistical data | Hazard of earthquake-landslide | Probability and aggregation degree of landslides (Hls) | [41] |
Vulnerability curves or indexes for different disasters | Vulnerability to earthquakes (Veq): | [51] | |
Vulnerability to landslides (Vls): | [52] | ||
Vulnerability to debris flows (Vdf): Xuankou, 0.3616; Sanjiang, 0.0672; Yinxing, 0.0766; Wolong, 0.0813; Gengda, 0.0819; Caopo, 0.0997; Longxi, 0.1171; Yanmen, 0.1185; Yingxiu, 0.1412; Keku, 0.1552; Miansi, 0.2538; Shuimo, 0.3874; Weizhou, 1.0000 | [53] |
Rainstorm Scenarios (RS) | RS1 | RS2 | RS3 | RS4 |
---|---|---|---|---|
i (mm/h) | 20 | 29 | 35 | 40 |
φ | 0.54 | 0.63 | 0.60 | 0.75 |
γH (t/m3) | 1.697 | 1.612 | 1.501 | 1.416 |
ϕc | 0.34 | 0.44 | 0.59 | 0.73 |
Dc | 1.5 | 1.5 | 1.5 | 1.5 |
Hc (m) | 1 | 2 | 3 | 5 |
Indicators | y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 | y11 | y12 | y13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weights of EM (%) | 27.29 | 11.98 | 1.44 | 15.01 | 1.05 | 2.28 | 4.53 | 6.95 | 0.59 | 4.07 | 10.02 | 2.46 | 12.33 |
Weights of AHP (%) | 14.55 | 11.16 | 10.29 | 28.48 | 1.49 | 2.94 | 4.98 | 8.45 | 2.22 | 2.83 | 5.63 | 2.36 | 4.61 |
Comprehensive weights (%) | 20.92 | 11.57 | 5.87 | 21.75 | 1.27 | 2.61 | 4.75 | 7.70 | 1.41 | 3.45 | 7.82 | 2.41 | 8.47 |
Earthquake Intensity | VIII | IX | X | XI | ||||
---|---|---|---|---|---|---|---|---|
Population Loss | Risk (people/km2) | Rate (%) | Risk (people/km2) | Rate (%) | Risk (people/km2) | Rate (%) | Risk (people/km2) | Rate (%) |
Earthquake | 0.03 | 0.10 | 0.15 | 0.61 | 2.56 | 6.05 | 9.26 | 26.67 |
Landslide | 1.07 | 4.15 | 1.10 | 4.40 | 0.72 | 1.80 | 0.83 | 3.27 |
Debris flow under RS1 | 0.07 | 0.29 | 0.10 | 0.40 | 0.15 | 0.39 | 0.08 | 0.31 |
Debris flow under RS2 | 0.11 | 0.43 | 0.14 | 0.60 | 0.24 | 0.61 | 0.11 | 0.46 |
Debris flow under RS3 | 0.14 | 0.56 | 0.19 | 0.78 | 0.31 | 0.78 | 0.15 | 0.60 |
Debris flow under RS4 | 0.16 | 0.66 | 0.22 | 0.91 | 0.36 | 0.91 | 0.17 | 0.71 |
Disaster chain under RS1 | 1.16 | 4.52 | 1.35 | 5.37 | 3.43 | 8.11 | 10.17 | 29.28 |
Disaster chain under RS2 | 1.20 | 4.65 | 1.40 | 5.55 | 3.52 | 8.31 | 10.21 | 29.39 |
Disaster chain under RS3 | 1.23 | 4.78 | 1.44 | 5.72 | 3.59 | 8.47 | 10.24 | 29.49 |
Disaster chain under RS4 | 1.25 | 4.87 | 1.47 | 5.85 | 3.64 | 8.59 | 10.27 | 29.57 |
Disaster Events | Actual Population Loss or Casualty (People) | Risk of Population Loss (People) | |||
---|---|---|---|---|---|
RS1 | RS2 | RS3 | RS4 | ||
Huaxi Gully | 1 | 1.81 | 2.60 | 3.41 | 3.88 |
Taoguan Gully | 1 | 0.53 | 0.84 | 1.15 | 1.31 |
Jie Village | 2 | 1.78 | 2.62 | 3.45 | 4.03 |
Yaozi Gully | 7 | 5.85 | 8.82 | 11.70 | 13.75 |
Kechong Village | 2 | 1.81 | 2.60 | 3.41 | 3.88 |
Cutou Gully | 3 | 5.33 | 7.91 | 10.51 | 12.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Yin, Y.; Wu, Y.; Wu, S. Risk Assessment of Population Loss Posed by Earthquake-Landslide-Debris Flow Disaster Chain: A Case Study in Wenchuan, China. ISPRS Int. J. Geo-Inf. 2021, 10, 363. https://doi.org/10.3390/ijgi10060363
Han X, Yin Y, Wu Y, Wu S. Risk Assessment of Population Loss Posed by Earthquake-Landslide-Debris Flow Disaster Chain: A Case Study in Wenchuan, China. ISPRS International Journal of Geo-Information. 2021; 10(6):363. https://doi.org/10.3390/ijgi10060363
Chicago/Turabian StyleHan, Xiang, Yunhe Yin, Yuming Wu, and Shaohong Wu. 2021. "Risk Assessment of Population Loss Posed by Earthquake-Landslide-Debris Flow Disaster Chain: A Case Study in Wenchuan, China" ISPRS International Journal of Geo-Information 10, no. 6: 363. https://doi.org/10.3390/ijgi10060363
APA StyleHan, X., Yin, Y., Wu, Y., & Wu, S. (2021). Risk Assessment of Population Loss Posed by Earthquake-Landslide-Debris Flow Disaster Chain: A Case Study in Wenchuan, China. ISPRS International Journal of Geo-Information, 10(6), 363. https://doi.org/10.3390/ijgi10060363