A Study of Diffusion Equation-Based Land-Use/Land-Cover Change Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and the Data
2.2. The Notations
2.3. The Methods
2.3.1. The Experimental Framework
2.3.2. The Mathematical Representation of the Diffusion Process
2.3.3. The Solving of the Diffusion Coefficient
3. Results
3.1. The Land-Use/Land-Cover Prediction Using the Diffusion Equation
3.2. The Influence of Different Neighborhoods
3.3. The Influence of Diffusion Coefficient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lederbogen, F.; Kirsch, P.; Haddad, L.; Streit, F.; Tost, H.; Schuch, P.; Wüst, S.; Pruessner, J.; Rietschel, M.; Deuschle, M.; et al. City living and urban upbringing affect neural social stress processing in humans. Nature 2011, 474, 498–501. [Google Scholar] [CrossRef]
- Ritchie, H. Urbanization. Our World in Data. 2018. Available online: https://ourworldindata.org/urbanization (accessed on 15 March 2021).
- Meng, J. How Does Urbanization Affect the Real Estate Demand? IEIS2019; Li, M., Dresner, M., Zhang, R., Hua, G., Shang, X., Eds.; Springer: Singapore, 2020; pp. 597–608. [Google Scholar]
- Burian, S.J.; Shepherd, J.M. Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Process. 2005, 19, 1089–1103. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M.; Dauda, L. Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries. Energy 2020, 196, 117102.1–117102.15. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Fang, J.; Li, Q.; Kaufmann, R.K.; Tucker, C.J.; Myneni, R.B. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maparu, T.S.; Mazumder, T.N. Investigating causality between transport infrastructure and urbanization: A state-level study of India (1991–2011). Transp. Policy 2020. [Google Scholar] [CrossRef]
- Alpert, P.; Kishcha, P.; Kaufman, Y.J.; Schwarzbard, R. Global dimming or local dimming?: Effect of urbanization on sunlight availability. Geophys. Res. Lett. 2005, 321, 023320. [Google Scholar] [CrossRef] [Green Version]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Jiao, L. Urban land density function: A new method to characterize urban expansion. Landsc. Urban Plan. 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Heilig, G.K. Anthropogenic factors in land-use change in China. Popul. Dev. Rev. 1997, 23, 139–168. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Verbist, B.; Putra, A.E.D.; Budidarsono, S. Factors driving land use change: Effects on watershed functions in a coffee agroforestry system in Lampung, Sumatra. Agric. Syst. 2005, 85, 254–270. [Google Scholar] [CrossRef]
- Mustafa, D.; Sawas, A. Urbanisation and Political Change in Pakistan: Exploring the known unknowns. Third World Q. 2013, 34, 1293–1304. [Google Scholar] [CrossRef]
- Zander, P.; Kächele, H. Modelling multiple objectives of land use for sustainable development. Agric. Syst. 1999, 59, 311–325. [Google Scholar] [CrossRef]
- Godschalk, D.R. Land use planning challenges: Coping with conflicts in visions of sustainable development and livable communities. J. Am. Plan. Assoc. 2004, 70, 5–13. [Google Scholar] [CrossRef]
- Miskin, C.; Li, Y.; Perna, A.; Ellis, R.; Grubbs, E.; Bermel, P.; Agrawal, R. Sustainable co-production of food and solar power to relax land-use constraints. Nat. Sustain. 2019, 2, 972–980. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y.; Wang, Y. Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. J. Clean. Prod. 2019, 238, 117899. [Google Scholar] [CrossRef]
- Gibas, P.; Majorek, A. Analysis of land-use change between 2012–2018 in Europe in terms of sustainable development. Land 2020, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Jamali, A. Land use land cover modeling using optimized machine learning classifiers: A case study of Shiraz, Iran. Model. Earth Syst. Environ. 2020, 1–12. [Google Scholar] [CrossRef]
- Nyamekye, C.; Kwofie, S.; Ghansah, B.; Agyapong, E.; Boamah, L.A. Assessing urban growth in Ghana using machine learning and intensity analysis: A case study of the New Juaben Municipality. Land Use Policy 2020, 99, 105057. [Google Scholar] [CrossRef]
- Pan, W.K.; Bilsborrow, R.E. The use of a multilevel statistical model to analyze factors influencing land use: A study of the Ecuadorian Amazon. Glob. Planet. Chang. 2005, 47, 232–252. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Chen, H.; Chen, Z.; Li, M. An agent-based learning-embedded model (ABM-learning) for urban land use planning: A case study of residential land growth simulation in Shenzhen, China. Land Use Policy 2020, 95, 104620. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Ye, B.; Bai, Z. Simulating land use/cover changes of Nenjiang County based on CA-Markov model. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Wuyishan, China, 8–20 August 2007; pp. 321–329. [Google Scholar]
- Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef]
- Batty, M.; Longley, P.; Fotheringham, S. Urban growth and form: Scaling, fractal geometry, and diffusion-limited aggregation. Environ. Plan. A 1989, 21, 1447–1472. [Google Scholar] [CrossRef]
- Cao, W.; Dong, L.; Wu, L.; Liu, Y. Quantifying urban areas with multi-source data based on percolation theory. Remote Sens. Environ. 2020, 241, 111730. [Google Scholar] [CrossRef] [Green Version]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Ahmad, F.; Goparaju, L. Analysis of Urban Sprawl Dynamics Using Geospatial Technology in Ranchi City, Jharkhand, India. J. Environ. Geogr. 2016, 9, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, Y.; Li, Y.; Li, J. Measure of urban-rural transformation in Beijing-Tianjin-Hebei region in the new millennium: Population-land-industry perspective. Land Use Policy 2018, 79, 595–608. [Google Scholar] [CrossRef]
- Dou, P.; Chen, Y. Dynamic monitoring of land-use/land-cover change and urban expansion in Shenzhen using Landsat imagery from 1988 to 2015. Int. J. Remote Sens. 2017, 38, 5388–5407. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
The land use category of the grid in row i and column j | |
t is the time moment, and k means the biggest year | |
The land-use type of the grid in row i and column j at time t | |
The domain proportion probability at time n | |
The influence from the neighborhood of the central grid at the moment of t | |
The diffusion coefficient that represents the diffusion capacity of land type |
Forest | Grassland | Cultivated Land | Built-Up Area | Waterbody | Bareland | |
---|---|---|---|---|---|---|
forest | 0.8837 | 0.0132 | 0.0252 | 0.0393 | 0.0054 | 0.0333 |
grassland | 0.4235 | 0.2154 | 0.0677 | 0.0299 | 0.0027 | 0.2608 |
cultivated land | 0.2666 | 0.0369 | 0.4003 | 0.0787 | 0.0048 | 0.2128 |
built-up area | 0.1298 | 0.0079 | 0.0230 | 0.7404 | 0.0287 | 0.0703 |
waterbody | 0.1143 | 0.0016 | 0.0026 | 0.1138 | 0.7560 | 0.0117 |
bareland | 0.2047 | 0.0507 | 0.0699 | 0.1703 | 0.0099 | 0.4945 |
District | Luohu | Baoan | Futian | Guangming | Longgang | Longhua | Nanshan | Pingshan | Yantian | Dapeng |
---|---|---|---|---|---|---|---|---|---|---|
KAPPA | 0.7544 | 0.6741 | 0.5951 | 0.6087 | 0.8931 | 0.6652 | 0.6388 | 0.6170 | 0.7002 | 0.9108 |
The overall accuracy | 0.8765 | 0.7835 | 0.7714 | 0.7287 | 0.9031 | 0.7885 | 0.7874 | 0.7762 | 0.8872 | 0.9184 |
Distinct | Luohu | Futian | Nanshan | Baoan | Longgang | Yantian | Longhua | Pingshan | Guangming | Dapeng |
---|---|---|---|---|---|---|---|---|---|---|
4 neighborhood | 0.8625 | 0.7462 | 0.7665 | 0.7510 | 0.8991 | 0.8740 | 0.7485 | 0.7594 | 0.6999 | 0.9182 |
8 neighborhood | 0.8765 | 0.7714 | 0.7874 | 0.7835 | 0.9031 | 0.8872 | 0.7885 | 0.7762 | 0.7287 | 0.9184 |
25 neighborhood | 0.8830 | 0.7764 | 0.7957 | 0.7919 | 0.9094 | 0.8905 | 0.7983 | 0.7813 | 0.7358 | 0.9163 |
Distinct | Luohu | Futian | Nanshan | Baoan | Longgang | Yantian | Longhua | Pingshan | Guangming | Dapeng | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | Accuracy | Kappa | |
The change of slope | 0.8765 | 0.7544 | 0.7714 | 0.5951 | 0.7874 | 0.6388 | 0.7835 | 0.6741 | 0.9031 | 0.8931 | 0.8872 | 0.7002 | 0.7885 | 0.6652 | 0.7762 | 0.6170 | 0.7287 | 0.6087 | 0.9184 | 0.9108 |
The state transition matrix | 0.8835 | 0.7718 | 0.7760 | 0.6087 | 0.7964 | 0.6576 | 0.7676 | 0.6529 | 0.8957 | 0.8852 | 0.8731 | 0.6552 | 0.7981 | 0.6829 | 0.7806 | 0.6325 | 0.6999 | 0.5708 | 0.9163 | 0.9088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Feng, R.; Wang, L.; Yan, J. A Study of Diffusion Equation-Based Land-Use/Land-Cover Change Simulation. ISPRS Int. J. Geo-Inf. 2021, 10, 383. https://doi.org/10.3390/ijgi10060383
Jin M, Feng R, Wang L, Yan J. A Study of Diffusion Equation-Based Land-Use/Land-Cover Change Simulation. ISPRS International Journal of Geo-Information. 2021; 10(6):383. https://doi.org/10.3390/ijgi10060383
Chicago/Turabian StyleJin, Min, Ruyi Feng, Lizhe Wang, and Jining Yan. 2021. "A Study of Diffusion Equation-Based Land-Use/Land-Cover Change Simulation" ISPRS International Journal of Geo-Information 10, no. 6: 383. https://doi.org/10.3390/ijgi10060383
APA StyleJin, M., Feng, R., Wang, L., & Yan, J. (2021). A Study of Diffusion Equation-Based Land-Use/Land-Cover Change Simulation. ISPRS International Journal of Geo-Information, 10(6), 383. https://doi.org/10.3390/ijgi10060383