Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basin Characteristics
2.2. Methodology
2.2.1. Selecting of the Criteria Influencing Groundwater Storage Potential
2.2.2. Data Acquisition and Integration into a GIS Database
2.2.3. Weight Assignment and Normalisation of Criteria Using AHP
2.2.4. Criteria Standardisation, Delineation and Validation of Groundwater Potential Zones Map
3. Results
3.1. Thematic Layers Produced Using AHP Method
3.1.1. Lithology
3.1.2. Land-Use Classes
3.1.3. Lineament Density
3.1.4. Slope
3.1.5. Drainage Density
3.1.6. Topographic Wetness Index (TWI)
3.1.7. Soil Type
3.1.8. Soil Thickness
3.1.9. Rainfall
3.1.10. Geomorphology
3.2. Delineation and Validation of Groundwater Potential Zones
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GDSHW (General Directorate of State Hydraulic Works)—A. Toprak Su Kaynakları. Available online: https://www.dsi.gov.tr/Sayfa/Detay/754 (accessed on 15 February 2021).
- GDWM. The Effect of Climate Change on Water Resources Project Report; Republic of Turkey Ministry of Agriculture and Forestry–General Directorate of Water Management: Ankara, Turkey, 2016; p. 424. (In Turkish) [Google Scholar]
- UNECE (United Nations Economic Commission for Europe). Second Assessment of Transboundary Rivers, Lakes and Groundwaters; United Nations Publications: New York, NY, USA, 2011. [Google Scholar]
- De Stefano, L.; Lopez-Gunn, E. Unauthorised groundwater use: Institutional, social and ethical considerations. Water Policy 2012, 14, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Israil, M.; Al-Hadithi, M.; Singhal, D.C. Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeol. J. 2006, 14, 753–759. [Google Scholar] [CrossRef]
- Razandi, Y.; Pourghasemi, H.R.; Neisani, N.S.; Rahmati, O. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci. India 2015, 8, 867–883. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Das, S.; Das, S.; Kalashetty, M.; Warghat, S.R. An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region. Environ. Dev. Sustain. 2021, 23, 495–510. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Manap, M.A. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 2014, 513, 283–300. [Google Scholar] [CrossRef]
- Şener, E.; Şener, Ş.; Davraz, A. Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Beyşehir Lake Basin, Turkey. Arab. J. Geosci. 2018, 11, 187. [Google Scholar] [CrossRef]
- Murmu, P.; Kumar, M.; Lal, D.; Sonker, I.; Singh, S.K. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundw. Sustain. Dev. 2019, 9, 100239. [Google Scholar] [CrossRef]
- Forootan, E.; Seyedi, F. GIS-based multi-criteria decision making and entropy approaches for groundwater potential zones delineation. Earth Sci. Inform. 2021, 14, 333–347. [Google Scholar] [CrossRef]
- Solomon, S.; Quiel, F. Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol. J. 2006, 14, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Chowdary, V.M.; Ramakrishnan, D.; Srivastava, Y.K.; Srivastava, Y.K.; Chandran, V.; Jeyaram, A. Integrated water resource development plan for sustainable management of Mayurakshi Watershed, India using remote sensing and GIS. Water Resour. Manage. 2009, 23, 1581–1602. [Google Scholar] [CrossRef]
- Mukherjee, P.; Singh, C.K.; Mukherjee, S. Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS Approach. Water. Resour. Manag. 2012, 26, 2643–2672. [Google Scholar] [CrossRef]
- Awawdeh, M.; Obeidat, M.; Al-Mohammad, M.; Al-Qudah, K.; Jaradat, R. Integrated GIS and remote sensing for mapping groundwater potentiality in the Tulul al Ashaqif, Northeast Jordan. Arab. J. Geosci. 2014, 7, 2377–2392. [Google Scholar] [CrossRef]
- Yeh, H.F.; Cheng, Y.S.; Lin, H.I.; Lee, C.H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Swetha, T.V.; Gopinath, G.; Thrivikramji, K.P.; Jesiya, N.P. Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala. Environ. Earth. Sci. 2017, 76, 428. [Google Scholar] [CrossRef]
- Achu, A.L.; Thomas, J.; Reghunath, R. Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundw. Sustain. Dev. 2020, 10, 100365. [Google Scholar] [CrossRef]
- Allafta, H.; Opp, C.; Patra, S. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab Basin. Remote Sens. 2021, 13, 112. [Google Scholar] [CrossRef]
- Keeney, R.L.; Wood, E.F. An illustrative example of the use of multi attribute utility theory for water resource planning. Water Resour. Res. 1977, 13, 705–712. [Google Scholar] [CrossRef]
- Çelik, R. Evaluation of Groundwater Potential by GIS-Based Multicriteria Decision Making as a Spatial Prediction Tool: Case Study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water 2019, 11, 2630. [Google Scholar] [CrossRef] [Green Version]
- Mallick, J.; Khan, R.A.; Ahmed, M.; Alqadhi, S.D.; Alsubih, M.; Falqi, I.; Hasan, M.A. Modeling groundwater potential zone in a semi-arid region of Aseer using Fuzzy-AHP and geoinformation techniques. Water 2019, 11, 2656. [Google Scholar] [CrossRef] [Green Version]
- Rajasekhar, M.; Raju, G.S.; Sreenivasulu, Y.; Raju, R.S. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch 2019, 2, 97–108. [Google Scholar] [CrossRef]
- Etikala, B.; Golla, V.; Li, P.; Renati, S. Deciphering groundwater potential zones using MIF technique and GIS: A study from Tirupati area, Chittoor District, Andhra Pradesh, India. HydroResearch 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Raju, R.S.; Raju, G.S.; Rajasekhar, M. Identification of groundwater potential zones in Mandavi River basin, Andhra Pradesh, India using remote sensing, GIS and MIF techniques. HydroResearch 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Lilienfeld, A.; Asmild, M. Estimation of excess water use in irrigated agriculture: A Data Envelopment Analysis approach. Agric. Water Manag. 2007, 94, 73–82. [Google Scholar] [CrossRef]
- Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An Integrated multicriteria analysis tool for evaluating water resource management strategies. Water 2018, 10, 1795. [Google Scholar] [CrossRef] [Green Version]
- Roozbahani, A.; Ebrahimi, E.; Banihabib, M.E.A. Framework for ground water management based on bayesian network and MCDM Techniques. Water Resour. Manage. 2018, 32, 4985–5005. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef]
- Sapkota, M.; Arora, M.; Malano, H.; Sharma, A.; Moglia, M. Integrated evaluation of hybrid water supply systems using a PROMETHEE–GAIA approach. Water 2018, 10, 610. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGrawHill: New York, NY, USA, 1980. [Google Scholar]
- Jhariya, D.C.; Kumar, T.; Gobinath, M.; Diwan, P.; Kishore, N. Assessment of groundwater potential zone using remote sensing, GIS and multi criteria decision analysis techniques. J. Geol. Soc. India 2016, 88, 481–492. [Google Scholar] [CrossRef]
- Andualem, T.G.; Demeke, G.G. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2019, 24, 100610. [Google Scholar] [CrossRef]
- Fenta, A.A.; Kifle, A.; Gebreyohannes, T.; Hailu, G. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeol. J. 2015, 23, 195–206. [Google Scholar] [CrossRef]
- Aykut, T. Determination of groundwater potential zones using Geographical Information Systems (GIS) and Analytic Hierarchy Process (AHP) between Edirne-Kalkansogut (northwestern Turkey). Groundw. Sustain. Dev. 2021, 12, 100545. [Google Scholar] [CrossRef]
- Maity, D.; Mandal, S. Identification of groundwater potential zones of the Kumari river basin, India: An RS & GIS based semi-quantitative approach. Environ. Dev. Sustain. 2017, 21, 1013–1034. [Google Scholar] [CrossRef]
- Das, B.; Pal, S.; Malik, S.; Chakrabortty, R. Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol. Ecol. Landsc. 2018, 3, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Mishra, P.; Mahapatra, S. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J. Clean. Prod. 2018, 172, 2485–2502. [Google Scholar] [CrossRef]
- Benjmel, K.; Amraoui, F.; Boutaleb, S.; Ouchchen, M.; Tahiri, A.; Touab, A. Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water 2020, 12, 471. [Google Scholar] [CrossRef] [Green Version]
- GDSHW (General Directorate of State Hydraulic Works)—B. Akım Gözlem Yıllıkları. Available online: https://www.dsi.gov.tr/Sayfa/Detay/744# (accessed on 23 February 2021).
- TSMS (Turkish State Meteorological Service) MEVBİS. Available online: https://mevbis.mgm.gov.tr/mevbis/ui/index.html (accessed on 23 February 2021).
- GDRS (General Directorate of Rural Services)—A. Soil Characteristics Map of Scale 1/25.000; GDRS: Ankara, Turkey, 2001. [Google Scholar]
- GDRS (General Directorate of Rural Services)—B. Land Use Types Map of Scale 1/25.000; GDRS: Ankara, Turkey, 2001. [Google Scholar]
- GDMRE (General Directorate of Mineral Research and Exploration)—A. 1:500.000 Scale Geological Map of Turkey, Erzurum Sheet; Geological Research Department: Ankara, Turkey, 2002. [Google Scholar]
- GDMRE (General Directorate of Mineral Research and Exploration)—B. 1:500.000 Scale Geological Map of Turkey, Trabzon Sheet; Geological Research Department: Ankara, Turkey, 2002. [Google Scholar]
- GDWM. Coruh and Eastern Black Sea Basins Flood Management Plan Preparation Project Report; Republic of Turkey Ministry of Agriculture and Forestry–General Directorate of Water Management: Ankara, Turkey, 2020; p. 120. Available online: https://webdosya.csb.gov.tr/db/scd/icerikler/coruhtytscdr-n-20210202082618.pdf (accessed on 25 February 2021). (In Turkish)
- Mohammadi-Behzad, H.R.; Charchi, A.; Kalantari, N.; Mehrabi Nejad, A.; Karimi Vardanjani, H. Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia–Keynow watershed, southwest of Iran. Carbonate Evaporite 2019, 34, 1307–1319. [Google Scholar] [CrossRef]
- Gyeltshen, S.; Tran, T.V.; Gunda, G.K.T.; Kannaujiya, S.; Chatterjee, R.S.; Champatiray, P.K. Groundwater potential zones using a combination of geospatial technology and geophysical approach: Case study in Dehradun, India. Hydrol. Sci. J. 2020, 65, 169–182. [Google Scholar] [CrossRef]
- Qadir, J.; Bhat, M.S.; Alam, A.; Rashid, I. Mapping groundwater potential zones using remote sensing and GIS approach in Jammu Himalaya, Jammu and Kashmir. GeoJournal 2020, 85, 487–504. [Google Scholar] [CrossRef]
- Ahmad, I.; Dar, M.A.; Andualem, T.G.; Teka, A.H. GIS-based multi-criteria evaluation of groundwater potential of the Beshilo River basin, Ethiopia. J. Afr. Earth Sci. 2020, 164, 103747. [Google Scholar] [CrossRef]
- Nigussie, W.; Hailu, B.T.; Azagegn, T. Mapping of groundwater potential zones using sentinel satellites (−1 SAR and −2A MSI) images and analytical hierarchy process in Ketar watershed, Main Ethiopian Rift. J. Afr. Earth Sci. 2019, 160, 103632. [Google Scholar] [CrossRef]
- Ziadat, F.; Bruggeman, A.; Oweis, T.; Haddad, N.; Mazahreh, S.; Sartawi, W.; Syuof, M. A participatory GIS approach for assessing land suitability for rainwater harvesting in an arid rangeland environment. Arid Land Res. Manag. 2012, 26, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Karimi, H.; Zeinivand, H. Integrating runoff map of a spatially distributed model and thematic layers for identifying potential rainwater harvesting suitability sites using GIS techniques. Geocarto Int. 2021, 36, 320–339. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rusteberg, B.; Gogu, R.C.; Lobo Ferreira, J.P.; Sauter, M. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J. Environ. Manag. 2012, 99, 61–75. [Google Scholar] [CrossRef]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Chorley, R.J. The drainage basin as the fundamental geomorphic unit. In Water, Earth, and Man: A Synthesis of Hydrology, Geomorphology and Socio-Economic Geography; Chorley, R.J., Ed.; Methuen: London, UK, 1969; pp. 77–99. [Google Scholar]
- Schumm, S.A. The Fluvial System; John Wiley & Sons: New York, NY, USA, 1977; p. 338. [Google Scholar]
- Roy, A.; Keesari, T.; Sinha, U.K.; Sabarathinam, C. Delineating groundwater prospect zones in a region with extreme climatic conditions using GIS and remote sensing techniques: A case study from central India. J. Earth Syst. Sci. 2019, 128, 201. [Google Scholar] [CrossRef] [Green Version]
- Jenness, J. Topographic Position Index (TPI) v. 1.2; Jenness Enterprises: Flagstaff, AZ, USA, 2006; Available online: http://www.jennessent.com/downloads/TPI_Documentation_online.pdf (accessed on 26 February 2021).
- Dilts, T.E. Topography Tools for ArcGIS 10.1; University of Nevada Reno: Reno, NV, USA, 2015; Available online: http://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9 (accessed on 27 February 2021).
- Carlston, C.W. Drainage Density and Streamflow; U.S. Geol. Surv. Prof. Pap. No. 422-C; U. S. Government Printing Office: Washington, DC, USA, 1963; pp. 1–8. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice Hall: Hoboken, NJ, USA, 1979; p. 604. [Google Scholar]
- Dippenaar, M.A. Porosity reviewed: Quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech. Geol. Eng. 2014, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sreedevi, P.H.; Sarah, S.; Alam, F.; Ahmed, S.; Chandra, S.; Pavelic, P. Investigating geophysical and hydrogeological variabilities and their impact on water resources in the context of meso-watersheds. In Integrated Assessment of Scale Impacts of Watershed Interventions; Reddy, V.R., Syme, G.J., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 57–83. [Google Scholar]
- Kotchoni, D.O.V.; Vouillamoz, J.M.; Lawson, F.M.A.; Adjomayi, P.; Boukari, M.; Taylo, R.G. Relationships between rainfall and groundwater recharge in seasonally humid Benin: A comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeol. J. 2019, 27, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, Ü.; Güler, C.; Önol, B.; Rode, M.; Jomaa, S. Modelling of the discharge response to climate change under RCP8.5 scenario in the Alata River Basin (Mersin, SE Turkey). Water 2021, 13, 483. [Google Scholar] [CrossRef]
- Barhanu, K.G.; Hatiye, S.D. Identification of groundwater potential zones using proxy data: Case study of Megech Watershed, Ethiopia. J. Hydrol. Reg. Stud. 2020, 28, 100676. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Msaddek, M.H.; Merzougui, A.; Zouhri, L.; Taupin, J.-D.; Chekirbane, A.; Chenini, I.; Tarhouni, J. Using Analytical Hierarchy Process and multi-influencing factors to map groundwater recharge zones in a semi-arid Mediterranean coastal aquifer. Water 2020, 12, 2525. [Google Scholar] [CrossRef]
- Shao, Z.; Huq, M.E.; Cai, B.; Altan, O.; Li, Y. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province. Environ. Model. Softw. 2020, 134, 104868. [Google Scholar] [CrossRef]
- Su, H.; Jia, Y.; Gan, Y.; Ni, G.; Niu, C.; Liu, H.; Jin, T.; Yao, Y. Soil water movement model for deformable soils. J. Water Clim. Chang. 2020, 11, 1191–1202. [Google Scholar] [CrossRef]
- Lerner, D.N.; Harris, B. The relationship between land use and groundwater resources and quality. Land Use Policy 2009, 26. [Google Scholar] [CrossRef]
- Güler, C.; Kurt, M.A.; Korkut, R.N. Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean coastal zone (Mersin, Turkey) under conflicting land use practices. Ocean. Coast. Manag. 2013, 71, 141–152. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Yıldırım, Ü.; Güler, C. Identification of suitable future municipal solid waste disposal sites for the Metropolitan Mersin (SE Turkey) using AHP and GIS techniques. Environ. Earth. Sci. 2016, 75, 101. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Wirth, S.B.; Carlier, C.; Cochand, F.; Hunkeler, D.; Brunner, P. Lithological and tectonic control on groundwater contribution to stream discharge during low-flow conditions. Water 2020, 12, 821. [Google Scholar] [CrossRef] [Green Version]
- Hamdani, N.; Baali, A. Characterization of groundwater potential zones using analytic hierarchy process and integrated geomatic techniques in Central Middle Atlas (Morocco). Appl. Geomat. 2020, 12, 323–335. [Google Scholar] [CrossRef]
- Magowe, M.; Carr, J.R. Relationship between lineaments and groundwater occurrence in western Botswana. Ground Water 1999, 37, 282–286. [Google Scholar] [CrossRef]
- Rashid, M.; Lone, M.A.; Ahmed, S. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environ. Monit. Assess. 2012, 184, 4829–4839. [Google Scholar] [CrossRef] [PubMed]
- Razavi-Termeh, S.; Sadeghi-Niaraki, A.; Choi, S. Groundwater potential mapping using an integrated ensemble of three Bivariate statistical models with random forest and logistic model tree models. Water 2019, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Garg, P.K. Remote sensing and gis based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour. Manage. 2016, 30, 243–260. [Google Scholar] [CrossRef]
- Ansari, Z.R.; Rao, L.A.K.; Yusuf, A. GIS based morphometric analysis of Yamuna drainage network in parts of Fatehabad area of Agra district, Uttar Pradesh. J. Geol. Soc. India 2012, 79, 505–514. [Google Scholar] [CrossRef]
- Rajaveni, S.P.; Brindha, K.; Elango, L. Geological and geomorphological controls on groundwater occurrence in a hard rock region. Appl. Water. Sci. 2015, 7, 1377–1389. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Petersen, G.A. Terrain attributes: Estimation methods and scale effects. In Modelling Change in Environmental Systems; Jakeman, A.J., Beck, M.B., McAleer, M., Eds.; Wiley: London, UK, 1993; pp. 189–214. [Google Scholar]
- Lentswe, G.B.; Molwalefhe, L. Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J. Hydrol. Reg. Stud. 2020, 28, 100674. [Google Scholar] [CrossRef]
- Akale, A.T.; Dagnew, D.C.; Moges, M.A.; Tilahun, S.A.; Steenhuis, T.S. The effect of landscape interventions on groundwater flow and surface runoff in a watershed in the Upper Reaches of the Blue Nile. Water 2019, 11, 2188. [Google Scholar] [CrossRef] [Green Version]
- Baker, V.R. Valley. In Encyclopedia Britannica; Encyclopedia Britannica Inc.: Chicago, IL, USA, 2020; Available online: https://www.britannica.com/science/valley (accessed on 25 March 2021).
- Jones, D.K.C. Denudation chronology. In Encyclopedia of Geomorphology; Goudie, A.S., Ed.; Taylor & Francis or Routledge’s: London, UK, 2004; Volume 1, pp. 244–248. [Google Scholar]
- Kumar, V.; Mondal, N.; Ahmed, S. Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. J. Indian Soc. Remote Sens. 2020, 48, 497–511. [Google Scholar] [CrossRef]
Characteristics | Unit | Value | Characteristics | Unit | Value |
---|---|---|---|---|---|
Basin area (total) | km2 | 3999.52 | Soil type | ||
Meteorology | Brown soil | % area | 48.71 | ||
Precipitation (total mean) a | mm/yr | 588.73 | Maroon | % area | 20.93 |
Temperature (mean) a | °C | 7.75 | Alluvium | % area | 8.61 |
Land use | High-level mountain meadow | % area | 6.74 | ||
Pasture | % area | 58.35 | Non-calcic brown soil | % area | 4.12 |
Agriculture | % area | 22.94 | Bare rock | % area | 3.11 |
Arable Land | % area | 8.94 | Basaltic | % area | 2.67 |
Scrub | % area | 4.57 | Colluvium | % area | 2.21 |
Bare Rock | % area | 3.11 | Non-calcic brown forest soil | % area | 1.59 |
Forest | % area | 1.28 | Settlement | % area | 0.69 |
Settlement | % area | 0.69 | Brown forest soil | % area | 0.47 |
River | % area | 0.04 | River | % area | 0.04 |
Floodplain | % area | 0.04 | Floodplain | % area | 0.03 |
Lake‒pond | % area | 0.03 | Lake-pond | % area | 0.03 |
Elevation range | % area | Lithology | |||
1486–1750 m | % area | 13.42 | Limestone | % area | 28.88 |
1750–2000 m | % area | 18.66 | Volcano-sedimentary rock | % area | 18.96 |
2000–2250 m | % area | 15.58 | Clastic and carbonate rock | % area | 17.10 |
2250–2500 m | % area | 10.19 | Alluvium | % area | 9.68 |
2500–2750 m | % area | 32.14 | Clastic rock | % area | 6.45 |
2750–3000 m | % area | 8.69 | Gneiss | % area | 5.43 |
3000–3265 m | % area | 1.32 | Volcanite | % area | 4.47 |
Slope range | Granitoid | % area | 3.41 | ||
0°–4° | % area | 18.51 | Evaporite sedimentary rock | % area | 2.90 |
4°–10° | % area | 15.86 | Ophiolite | % area | 1.67 |
10°–20° | % area | 33.16 | Ophiolitic mélange | % area | 0.81 |
20°–40° | % area | 30.15 | Travertine | % area | 0.14 |
>40° | % area | 2.32 | Dacite‒rhyolite‒rhyodacite | % area | 0.08 |
Scale | Definition |
---|---|
1 | Equal importance |
3 | Moderate importance |
5 | Strong importance |
7 | Very strong importance |
9 | Extreme importance |
2, 4, 6, 8 | Intermediate values between two adjacent numbers |
Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
Main Criteria | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | Wi |
---|---|---|---|---|---|---|---|---|---|---|---|
(1) Lithology | 1 | 0.222 | |||||||||
(2) Land-use classes | 1/4 | 1 | 0.045 | ||||||||
(3) Lineament density | 1/3 | 2 | 1 | 0.091 | |||||||
(4) Slope | 1/3 | 3 | 2 | 1 | 0.074 | ||||||
(5) Drainage density | 1/3 | 3 | 2 | 4 | 1 | 0.089 | |||||
(6) Topographic Wetness Index | 1/2 | 3 | 1/2 | 2 | 3 | 1 | 0.129 | ||||
(7) Soil type | 1/4 | 2 | 1/3 | 3 | 2 | 1/3 | 1 | 0.070 | |||
(8) Soil thickness | 1/7 | 1/3 | 1/4 | 1/4 | 1/3 | 1/6 | 1/2 | 1 | 0.022 | ||
(9) Rainfall | 1/3 | 2 | 2 | 2 | 2 | 1/2 | 2 | 4 | 1 | 0.099 | |
(10) Geomorphology | 1/2 | 2 | 2 | 2 | 3 | 2 | 4 | 6 | 2 | 1 | 0.0159 |
Sub-Criteria | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | ri | wi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lithology | |||||||||||||||
(1) Alluvium | 1 | 5 | 0.242 | ||||||||||||
(2) Clastic rock | 1/2 | 1 | 4 | 0.158 | |||||||||||
(3) Clastic and carbonate rock | 1/3 | 1/2 | 1 | 4 | 0.107 | ||||||||||
(4) Dacite‒rhyolite‒rhyodacite | 1/9 | 1/6 | 1/5 | 1 | 1 | 0.016 | |||||||||
(5) Evaporite sedimentary rock | 1/6 | 1/4 | 1/3 | 5 | 1 | 2 | 0.050 | ||||||||
(6) Gneiss | 1/7 | 1/5 | 1/3 | 2 | 1/2 | 1 | 1 | 0.026 | |||||||
(7) Granitoid | 1/9 | 1/6 | 1/5 | 1 | 1/3 | 1/2 | 1 | 1 | 0.015 | ||||||
(8) Limestone | 1/5 | 1/3 | 1/2 | 5 | 1/2 | 3 | 6 | 1 | 2 | 0.058 | |||||
(9) Ophiolite | 1/6 | 1/4 | 1/3 | 4 | 1 | 2 | 5 | 1/2 | 1 | 1 | 0.042 | ||||
(10) Ophiolitic mélange | 1/6 | 1/4 | 1/3 | 4 | 1/2 | 2 | 5 | 1/2 | 1 | 1 | 1 | 0.040 | |||
(11) Travertine | 1/5 | 1/4 | 1/2 | 5 | 2 | 3 | 5 | 2 | 2 | 2 | 1 | 2 | 0.066 | ||
(12) Volcanite | 1/4 | 1/3 | 1/2 | 5 | 2 | 4 | 6 | 2 | 3 | 3 | 2 | 1 | 3 | 0.087 | |
(13) Volcano-sedimentary rock | 1/3 | 1/2 | 1/2 | 5 | 3 | 4 | 6 | 2 | 3 | 3 | 2 | 1 | 1 | 3 | 0.094 |
Land-use classes | |||||||||||||||
(1) Agriculture | 1 | 4 | 0.113 | ||||||||||||
(2) Arable land | 1/2 | 1 | 3 | 0.089 | |||||||||||
(3) Bare rock | 1/5 | 1/4 | 1 | 1 | 0.024 | ||||||||||
(4) Floodplain | 2 | 2 | 7 | 1 | 4 | 0.145 | |||||||||
(5) Forest | 1/4 | 1/3 | 3 | 1/4 | 1 | 1 | 0.046 | ||||||||
(6) Lake-pond | 4 | 4 | 8 | 3 | 5 | 1 | 5 | 0.244 | |||||||
(7) Pasture | 1/5 | 1/4 | 1/2 | 1/6 | 1/2 | 1/6 | 1 | 1 | 0.029 | ||||||
(8) River | 4 | 4 | 8 | 3 | 5 | 1 | 6 | 1 | 5 | 0.244 | |||||
(9) Scrub | 1/4 | 1/3 | 2 | 1/5 | 1 | 1/6 | 2 | 1/6 | 1 | 1 | 0.041 | ||||
(10) Settlement | 1/6 | 1/6 | 2 | 1/7 | 1/3 | 1/7 | 1/3 | 1/7 | 1/3 | 1 | 1 | 0.023 | |||
Lineament density (km/km2) | |||||||||||||||
(1) 0−0.55 | 1 | 1 | 0.062 | ||||||||||||
(2) 0.55−1.11 | 2 | 1 | 2 | 0.099 | |||||||||||
(3) 1.11−1.66 | 3 | 2 | 1 | 3 | 0.161 | ||||||||||
(4) 1.66−2.22 | 4 | 3 | 2 | 1 | 4 | 0.262 | |||||||||
(5) 2.22−2.77 | 5 | 4 | 3 | 2 | 1 | 5 | 0.416 | ||||||||
Slope | |||||||||||||||
(1) 0°−4° | 1 | 5 | 0.516 | ||||||||||||
(2) 4°−10° | 1/3 | 1 | 4 | 0.247 | |||||||||||
(3) 10°−20° | 1/5 | 1/2 | 1 | 3 | 0.133 | ||||||||||
(4) 20°−40° | 1/7 | 1/5 | 1/2 | 1 | 2 | 0.065 | |||||||||
(5) > 40° | 1/9 | 1/7 | 1/5 | 1/2 | 1 | 1 | 0.038 | ||||||||
Drainage density (km/km2) | |||||||||||||||
(1) 0−0.168 | 1 | 5 | 0.515 | ||||||||||||
(2) 0.168−0.347 | 1/3 | 1 | 4 | 0.232 | |||||||||||
(3) 0.347−0.527 | 1/5 | 1/2 | 1 | 3 | 0.137 | ||||||||||
(4) 0.527−0.738 | 1/7 | 1/4 | 1/2 | 1 | 2 | 0.078 | |||||||||
(5) 0.738−1.385 | 1/8 | 1/6 | 1/5 | 1/3 | 1 | 1 | 0.039 | ||||||||
Topographic Wetness Index | |||||||||||||||
(1) 2.71−4.98 | 1 | 1 | 0.049 | ||||||||||||
(2) 4.98−6.50 | 2 | 1 | 2 | 0.078 | |||||||||||
(3) 6.50−8.49 | 3 | 2 | 1 | 3 | 0.145 | ||||||||||
(4) 8.49−11.71 | 4 | 3 | 2 | 1 | 4 | 0.219 | |||||||||
(5) 11.71−26.88 | 9 | 7 | 3 | 3 | 1 | 5 | 0.508 | ||||||||
Soil type | |||||||||||||||
(1) Alluvium | 1 | 4 | 0.177 | ||||||||||||
(2) Brown soil | 1/5 | 1 | 3 | 0.062 | |||||||||||
(3) Maroon | 1/7 | 1/2 | 1 | 2 | 0.032 | ||||||||||
(4) Bare rock | 1/9 | 1/4 | 1/4 | 1 | 1 | 0.015 | |||||||||
(5) Floodplain | 1 | 6 | 7 | 7 | 1 | 4 | 0.197 | ||||||||
(6) Colluvium | 2 | 6 | 8 | 9 | 3 | 1 | 5 | 0.256 | |||||||
(7) Brown forest soil | 1/4 | 1/2 | 3 | 5 | 1/5 | 1/5 | 1 | 3 | 0.048 | ||||||
(8) Non-calcic brown forest soil | 1/3 | 1/2 | 2 | 4 | 1/5 | 1/4 | 2 | 1 | 3 | 0.070 | |||||
(9) Non-calcic brown soil | 1/3 | 1/2 | 2 | 4 | 1/5 | 1/4 | 2 | 1 | 1 | 3 | 0.066 | ||||
(10) Basaltic | 1/7 | 1/2 | 1/2 | 3 | 1/7 | 1/7 | 1/3 | 1/6 | 1/6 | 1 | 1 | 0.022 | |||
(11) High-level mountain meadow | 1/5 | 1 | 1/2 | 4 | 1/5 | 1/5 | 2 | 1/3 | 1/2 | 5 | 1 | 3 | 0.049 | ||
Soil thickness | |||||||||||||||
(1) 0 cm | 1 | 1 | 0.035 | ||||||||||||
(2) 0−20 cm | 3 | 1 | 2 | 0.080 | |||||||||||
(3) 20−50 cm | 6 | 2 | 1 | 3 | 0.150 | ||||||||||
(4) 50−90 cm | 7 | 3 | 2 | 1 | 4 | 0.227 | |||||||||
(5) > 90 cm | 9 | 7 | 4 | 3 | 1 | 5 | 0.508 | ||||||||
Rainfall | |||||||||||||||
(1) 282‒421 mm | 1 | 1 | 0.061 | ||||||||||||
(2) 421‒565 mm | 2 | 1 | 2 | 0.097 | |||||||||||
(3) 565‒722 mm | 3 | 2 | 1 | 3 | 0.159 | ||||||||||
(4) 722‒898 mm | 4 | 3 | 2 | 1 | 4 | 0.240 | |||||||||
(5) 898‒1196 mm | 5 | 4 | 3 | 3 | 1 | 5 | 0.443 | ||||||||
Geomorphology | |||||||||||||||
(1) Valley | 1 | 4 | 0.305 | ||||||||||||
(2) Pediplain | 2 | 1 | 5 | 0.490 | |||||||||||
(3) Escarpment | 1/3 | 1/4 | 1 | 3 | 0.126 | ||||||||||
(4) High ridge | 1/4 | 1/5 | 1/2 | 1 | 1 | 0.079 |
Criteria | n | λmax | CI | RI | CR |
---|---|---|---|---|---|
All | 10 | 11.280 | 0.142 | 1.49 | 0.095 |
Lithology | 13 | 13.847 | 0.070 | 1.56 | 0.044 |
Land use classes | 10 | 10.993 | 0.110 | 1.49 | 0.073 |
Lineament density | 5 | 5.090 | 0.022 | 1.11 | 0.019 |
Slope | 5 | 5.199 | 0.049 | 1.11 | 0.044 |
Drainage density | 5 | 5.257 | 0.064 | 1.11 | 0.057 |
Topographic Wetness Index | 5 | 5.072 | 0.018 | 1.11 | 0.016 |
Soil type | 11 | 12.341 | 0.134 | 1.51 | 0.088 |
Soil thickness | 5 | 5.186 | 0.046 | 1.11 | 0.041 |
Rainfall | 5 | 5.180 | 0.045 | 1.11 | 0.040 |
Geomorphology | 4 | 4.066 | 0.022 | 0.89 | 0.024 |
Well ID | Coordinate (WGS 84 Zone 37N) | GW Depth (m, bgl) | Discharge (Ls−1) | GWPZ Classes a | |
---|---|---|---|---|---|
X | Y | ||||
W1 | 605803 | 4454914 | 1.5 | 9 | Very High |
W2 | 605797 | 4455073 | 1.5 | 20.2 | Very High |
W3 | 605931 | 4454916 | 1.4 | 23.8 | Very High |
W4 | 606085 | 4454808 | 2.1 | 18.4 | Very High |
W5 | 605763 | 4455162 | 2.1 | 20.2 | Very High |
W6 | 597611 | 4471768 | 1 | 55 | Very High |
W7 | 593680 | 4472456 | 0.5 | 80 | Very High |
W8 | 576009 | 4446090 | 28 | 8 | High |
W9 | 575850 | 4445190 | 24 | 8 | High |
W10 | 598498 | 4472262 | 0.5 | 65 | High |
W11 | 597949 | 4460361 | 90 | 0.5 | Moderate |
W12 | 594618 | 4470538 | 90 | 0.5 | Moderate |
W13 | 582748 | 4467031 | 20 | 11.9 | Moderate |
W14 | 595006 | 4471395 | 90 | 0.5 | Moderate |
W15 | 605326 | 4473550 | 74 | 1 | Low |
W16 | 598310 | 4473277 | 58 | 0.5 | Low |
W17 | 596958 | 4473190 | 84 | 1 | Low |
W18 | 595242 | 4465972 | 88 | 0.5 | Low |
W19 | 590324 | 4463441 | 32 | 0.5 | Low |
W20 | 594168 | 4473351 | 46 | 1 | Low |
W21 | 584575 | 4448723 | 85 | 1 | Very Low |
W22 | 586506 | 4456037 | 90 | 0.5 | Very Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldırım, Ü. Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS Int. J. Geo-Inf. 2021, 10, 396. https://doi.org/10.3390/ijgi10060396
Yıldırım Ü. Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS International Journal of Geo-Information. 2021; 10(6):396. https://doi.org/10.3390/ijgi10060396
Chicago/Turabian StyleYıldırım, Ümit. 2021. "Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey)" ISPRS International Journal of Geo-Information 10, no. 6: 396. https://doi.org/10.3390/ijgi10060396
APA StyleYıldırım, Ü. (2021). Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS International Journal of Geo-Information, 10(6), 396. https://doi.org/10.3390/ijgi10060396