Evaluating Cultural Landscape Remediation Design Based on VR Technology
Abstract
:1. Introduction
2. Data Sources and Processing
2.1. Study Area
2.2. Data Sources and Pre-Processing
3. Methodology of Design and Evaluation
3.1. Remediation Design Process
3.1.1. Conceptual Foundation
3.1.2. Ecological Landscape Remediation Design Methods and Technical Tools
3.2. Evaluation and Analysis of Ecological Landscape Remediation Design Effects
3.2.1. Statistics for Landscape Patches after Ecological Remediation Design
3.2.2. Evaluation and Analysis of the Visual Aesthetic Effect of the Landscape
- (1)
- Experimental design
- (2)
- Experimental equipment and materials
- (3)
- Experimental process
4. Results
4.1. VR Experimental Results and Evaluation and Analysis
4.2. Water Environment Quality Comparison Analysis and Effect Test
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, R.; Cox, M.; Dickins, I. (Eds.) Britain’s Planning Heritage; Croom Helm: London, UK, 1975. [Google Scholar]
- Ponzini, D. The Cultural Landscape and Heritage Paradox: Protection and Development of the Dutch Archaeological–Historical Landscape and Its European Dimension. Int. Plan. Stud. 2013, 18, 269–271. [Google Scholar] [CrossRef]
- UNESCO. Convention for the Safeguarding of the Intangible Cultural Heritage; UNESCO: Paris, France, 2003; pp. 45–52. [Google Scholar]
- Kurin, R. Safeguarding Intangible Cultural Heritage in the 2003 UNESCO Convention: A critical appraisal. Mus. Int. 2004, 56, 66–77. [Google Scholar] [CrossRef]
- Liu, W. Cultural asset appraisal helps cultural enterprises solve financing difficulties. China Asset Apprais. 2012, 2, 18–19. [Google Scholar]
- Li, Y. Identifying cultural heritage corridors for preservation through multidimensional network connectivity analysis—A case study of the ancient Tea-Horse Road in Simao, China. Landsc. Res. 2020, 3, 356–362. [Google Scholar] [CrossRef]
- Konkol, N.; Mcnamara, C.J.; Mitchell, R. Fluorometric detection and estimation of fungal biomass on cultural heritage materials. J. Microbiol. Methods 2010, 80, 178–182. [Google Scholar] [CrossRef]
- Mitchell, R. Protecting our cultural heritage. Environ. Sci. Technol. 2000, 34, 105A. [Google Scholar] [CrossRef]
- Munjeri, D. Tangible and Intangible Heritage: From difference to convergence. Mus. Int. 2004, 56, 12–20. [Google Scholar] [CrossRef]
- Rasmussen, O.P. Origin and Temporal Development of Macro-Scale Vegetation Patterns in the Cultural Landscape of Denmark. J. Ecol. 2000, 88, 733–748. [Google Scholar]
- Qiu, Q.; Zhang, M. Using Content Analysis to Probe the Cognitive Image of Intangible Cultural Heritage Tourism: An Exploration of Chinese Social Media. ISPRS Int. J. Geo-Inf. 2021, 10, 240. [Google Scholar] [CrossRef]
- Jung, K.; Nguyen, V.T.; Piscarac, D.; Yoo, S.-C. Meet the Virtual Jeju Dol Harubang—The Mixed VR/AR Application for Cultural Immersion in Korea’s Main Heritage. ISPRS Int. J. Geo-Inf. 2020, 9, 367. [Google Scholar] [CrossRef]
- Ruan, Y. The history of world and Chinese historical and cultural heritage protection. J. Tongji Univ. 2007, 1, 1–8. [Google Scholar]
- Shan, J. Urbanization and Cultural Heritage Protection; Tianjin University Press: Tianjin, China, 2006; Volume 12, pp. 456–462. [Google Scholar]
- Szyszko, J. Foundations of Poland 2019, Cultural Landscape Protection—Conservation Policy. In Cultural Landscapes and Land Use; Springer: Berlin/Heidelberg, Germany, 2006; Volume 14, pp. 1455–1459. [Google Scholar]
- Yu, H.; Wang, J. Introduction to the Protection of Chinese Cultural Heritage; Shandong University Press: Jinan, China, 2008; Volume 9, pp. 345–362. [Google Scholar]
- Lu, S.; Chen, S.; Pan, H. Preliminary study on assessment of tourism sustainability in ancient villages: Tacking word cultural heritage sites Hongcun as an example. Tour. Trib. 2010, 25, 17–25. [Google Scholar]
- Wang, S.; Chen, Y.; Yuan, Y.; Ye, H.; Zheng, S. Visualizing the Intellectual Structure of Eye Movement Research in Cartography. ISPRS Int. J. Geo Inf. 2016, 5, 168. [Google Scholar] [CrossRef] [Green Version]
- Yusan, Q.; Cai, T. Improving the System of Historic and Cultural Heritage Protection Through Social Participation: Based on the Practice of Guangdong. China City Plan. Rev. 2019, 7, 231–239. [Google Scholar]
- Gao, B.; Zhao, X. Technological Path of Cultural Consciousness: The Significance of Intangible Cultural Heritage Protection in China. J. South-Cent. Univ. Natl. 2014, 34, 1–6. [Google Scholar]
- Meng, X. The Development of Science and Technology of Historical and Cultural Heritage Protection. Chin. Cult. Herit. 2004, 7. [Google Scholar]
- Lu, D.; Pan, Y. Digital Protection of Cultural Heritage: Technology and Application; Zhejiang University Press: Hangzhou, China, 2009; Volume 11, pp. 38–42. [Google Scholar]
- Huang, S.; Xu, L. A PreIiminary Study of the DeveIopment and AppIication of Research on Healing Environment and HeaIing Architecture. Archit. Cult. 2017, 10, 101–104. [Google Scholar]
- Qin, J. Research on Information Visualization Design Method in Cultural Heritage Protection. Tsinghua Univ. 2006, 5, 86–89. [Google Scholar]
- Lv, B. Application of BIM+VR Technology in Green Building Design. Heibei Inst. Civ. Eng. 2019, 13, 345–352. [Google Scholar]
- Shi, J.; Honjo, T.; Zhang, K. Using Virtual Reality to Assess Landscape: A Comparative Study Between On-Site Survey and Virtual Reality of Aesthetic Preference and Landscape Cognition. Sustainability 2020, 12, 2875. [Google Scholar] [CrossRef] [Green Version]
- Mościcka, A.; Zwirowicz-Rutkowska, A. On the Use of Geographic Information in Humanities Research Infrastructure: A Case Study on Cultural Heritage. ISPRS Int. J. Geo-Inf. 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Atwa, S.M.; Ibrahim, M.G.; Saleh, A.M. Development of Sustainable Landscape Design Guidelines for a Green Business Park Using Virtual Reality. Sustain. Cities Soc. 2019, 48, 101543. [Google Scholar] [CrossRef]
- Lin, Z.; Ye, X.; Wei, Q.; Xin, F.; Lu, Z.; Kudva, S.; Dai, Q. Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China. Sustainability 2017, 9, 2356. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Fan, X.; Zhang, L.; Qian, W.; Bing, H. Research on Ecological Services Measurement and Space—Time Evolution of The Upper Reaches of Yangzte River Basin, China. J. Environ. Prot. Ecol. 2017, 18, 1534–1542. [Google Scholar]
- Lin, Z.S. On the Artistic Inheritance and Protection of the Brocade Patterns of Xilankapu. Wuhan Univ. Technol. 2014, 27, 197–200. [Google Scholar]
- Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry A Review from a Spatio-Temporal Statistical Perspective. ISPRS Int. J. Geo Inf. 2016, 5, 134–137.
- Gao, J. The Assessment of Water Environmental Quality Based on Extension Method. Front. Environ. Eng. 2013, 2, 63–66. [Google Scholar]
- Wang, K.; Cao, J.; Chen, H.B. Water Environmental Capacity Calculation of Shuibuya Reservoir in Qingjiang River. Environ. Sci. Surv. 2010, 12, 2312–2319. [Google Scholar]
- Xiang, B.S. N—God worship evolution of Ba—Tu People and the vicissitudes of the Historic. J. South-Cent. Univ. Natl. 2001, 6, 54–58. [Google Scholar]
- Su, L.; Dong, J.W. Study on the construction of evaluation index system of public participatory design in rural landscape construction. Chin. Landsc. Archit. 2019, 35, 101–105. [Google Scholar]
- Wang, Q.; Han, D.L.; Han, L. Application of analytic hierarchy process in comprehensive evaluation of ecological remediation of abandoned quarry. Sci. Soil Water Conserv. 2008, 6, 167–171. [Google Scholar]
- Matrone, F.; Grilli, E.; Martini, M.; Paolanti, M.; Pierdicca, R.; Remondino, F. Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation. ISPRS Int. J. Geo-Inf. 2020, 9, 535. [Google Scholar] [CrossRef]
- Ai, X.R.; Yi, Y.M. Study on Vegetation in Qingjiang River Basin; China Agricultural Science and Technology Press: Beijing, China, 2005; Volume 12, pp. 1322–1327. [Google Scholar]
- Cao, S.T. Study on Comprehensive Treatment of the Water Pollution of Qingjiang River Basin’s Tourism Environment. Ecol. Econ. 2015, 31, 141–144. [Google Scholar]
- Newman, G.; Malecha, M.; Yu, S.; Qiao, Z.; Horney, J.; Lee, J.; Kim, Y.J.; Lee, R.J.; Berke, P. Integrating a resilience scorecard and landscape performance tools into a Geodesign process. Landsc. Res. 2019, 45, 63–80. [Google Scholar] [CrossRef]
- Lin, Z. Visualized simulation analysis of open urban community model. J. Jilin Univ. 2018, 48, 336–343. [Google Scholar]
S/N | Classification | Monitoring Contents | Data Sources |
---|---|---|---|
1 | Waste pollutants | water, soil, gas and solid pollutants | Field and indoor experiment method |
2 | Natural environment | geological landscape, elevation (DEM), slope gradient and direction | Processing by ENVI5.2 and Arc GIS10.2 software |
3 | Social environment | number of people, floor area, and land use in the relics area | Field surveys |
S/N | The Landscape Spatial Pattern | The Cross-Section Data Statistics |
---|---|---|
A. Xiangwangjie Temple | ||
B. Wulingshan Temple | ||
C. Shizhuguan Temple | ||
D. Wuluozhonglishan Temple | ||
E. Hanyangqiao Temple |
S/N | ST | XT | WT | MT | HT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average Saccade Counts | Fixation Counts (N) | Average Saccade Counts (N/s) | Fixation Counts (N) | Average Saccade Counts (N/s) | Fixation Counts (N) | Average Saccade Counts (N/s) | Fixation Counts (N) | Average Saccade Counts (N/s) | Fixation Counts | ||
Experts | 1 | 6.33 | 492 | 5.78 | 524 | 6.45 | 524 | 6.54 | 546 | 6.46 | 468 |
2 | 5.62 | 501 | 5.89 | 503 | 6.03 | 522 | 6.68 | 523 | 6.68 | 487 | |
3 | 7.12 | 495 | 6.47 | 509 | 5.98 | 523 | 5.58 | 517 | 6.46 | 502 | |
4 | 6.45 | 501 | 6.52 | 501 | 6.01 | 511 | 5.89 | 523 | 6.04 | 511 | |
5 | 6.78 | 523 | 5.77 | 503 | 6.02 | 486 | 6.47 | 501 | 4.65 | 495 | |
6 | 6.35 | 496 | 5.87 | 499 | 5.78 | 499 | 6.48 | 535 | 5.46 | 489 | |
7 | 7.07 | 497 | 6.34 | 487 | 5.68 | 526 | 6.33 | 537 | 6.34 | 479 | |
8 | 7.22 | 531 | 6.12 | 512 | 6.34 | 507 | 6.04 | 504 | 6.33 | 478 | |
Students | 1 | 7.04 | 531 | 6.87 | 493 | 5.95 | 503 | 5.89 | 544 | 5.87 | 495 |
2 | 6.14 | 514 | 6.43 | 532 | 5.76 | 498 | 6.23 | 522 | 5.88 | 492 | |
3 | 7.06 | 533 | 6.11 | 522 | 6.11 | 538 | 5.56 | 536 | 6.23 | 523 | |
4 | 6.76 | 521 | 5.78 | 546 | 5.78 | 577 | 6.04 | 567 | 6.21 | 545 | |
5 | 5.89 | 534 | 6.79 | 568 | 6.23 | 581 | 5.66 | 549 | 6.32 | 548 | |
6 | 6.54 | 545 | 6.03 | 534 | 6.55 | 544 | 5.67 | 578 | 6.04 | 498 | |
7 | 6.56 | 567 | 5.98 | 589 | 5.87 | 602 | 5.59 | 584 | 6.56 | 509 | |
8 | 7.47 | 678 | 6.03 | 524 | 5.97 | 514 | 6.26 | 519 | 6.32 | 493 |
Classification | S/N | Monitoring Item | Monitoring Points | Limits in Standards for Grade Ⅲ Water Bodies | ||||
WT | MT | XT | ST | HT | ||||
After remediation (2019) | 1 | pH | 7.9 | 7.7 | 7.8 | 7.5 | 7.7 | 6~9 |
2 | DO (mg/L) | 4.47 | 4.43 | 3.45 | 4.58 | 4.02 | ≥5 | |
3 | NH3-N (mg/L) | 1.08 | 0.37 | 1.01 | 0.57 | 1.27 | ≤1 | |
4 | CODMn (mg/L) | 2.10 | 2 | 2.10 | 1.90 | 2.20 | ≤6 | |
5 | BOD5 (mg/L) | 0.73 | 0.68 | 0.79 | 0.68 | 1.69 | ≤4 | |
6 | F− (mg/L) | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | ≤1.0 | |
7 | TP (mg/L) | 0.32 | 0.13 | 0.32 | 0.31 | 0.41 | ≤0.20 | |
8 | CODCr (mg/L) | 25.78 | 12 | 23 | 11 | 15 | ≤20 | |
9 | TN (mg/L) | 1.78 | 1.72 | 1.82 | 1.58 | 2.03 | ≤1.0 | |
Before remediation (2016) | 1 | pH | 7.9 | 7.7 | 7.8 | 7.6 | 7.7 | 6~9 |
2 | DO (mg/L) | 4.52 | 3.89 | 4.96 | 4.02 | 4.43 | ≥5 | |
3 | NH3-N (mg/L) | 1.27 | 1.07 | 1.13 | 1.07 | 1.34 | ≤1 | |
4 | CODMn (mg/L) | 1.08 | 1.02 | 2.10 | 1.04 | 2.14 | ≤6 | |
5 | BOD5 (mg/L) | 0.76 | 0.82 | 0.69 | 0.82 | 0.68 | ≤4 | |
6 | F− (mg/L) | 1.14 | 1.14 | 1.14 | 1.14 | 1.14 | ≤1.0 | |
7 | TP (mg/L) | 0.32 | 0.23 | 0.29 | 0.31 | 0.25 | ≤0.20 | |
8 | CODCr (mg/L) | 21 | 18 | 23 | 21 | 19 | ≤20 | |
9 | TN (mg/L) | 1.82 | 1.77 | 1.94 | 1.67 | 1.72 | ≤1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Zhang, L.; Tang, S.; Song, Y.; Ye, X. Evaluating Cultural Landscape Remediation Design Based on VR Technology. ISPRS Int. J. Geo-Inf. 2021, 10, 423. https://doi.org/10.3390/ijgi10060423
Lin Z, Zhang L, Tang S, Song Y, Ye X. Evaluating Cultural Landscape Remediation Design Based on VR Technology. ISPRS International Journal of Geo-Information. 2021; 10(6):423. https://doi.org/10.3390/ijgi10060423
Chicago/Turabian StyleLin, Zhengsong, Lu Zhang, Su Tang, Yang Song, and Xinyue Ye. 2021. "Evaluating Cultural Landscape Remediation Design Based on VR Technology" ISPRS International Journal of Geo-Information 10, no. 6: 423. https://doi.org/10.3390/ijgi10060423
APA StyleLin, Z., Zhang, L., Tang, S., Song, Y., & Ye, X. (2021). Evaluating Cultural Landscape Remediation Design Based on VR Technology. ISPRS International Journal of Geo-Information, 10(6), 423. https://doi.org/10.3390/ijgi10060423