Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai
Abstract
:1. Introduction
2. Literature Review
2.1. Objective and Subjective Measures
2.2. Computer Vision and Machine Learning in Street Measures
3. Data and Methods
3.1. Study Area and Data Preparation
3.2. Selection and Calculation of the Four Subjective Qualities
3.2.1. Downloading Baidu SVIs
3.2.2. Collecting Public Perceptions as Training Labels
3.2.3. Physical Feature Classification
3.2.4. Streetscape Feature Selection
3.2.5. Predicting Subjective Scores
3.3. Correlation Test and Cross-Reference Validation
3.4. Global Comparison with Other Cities
4. Findings & Discussion
4.1. Descriptive Statistics of the Classfication and Significant Streetscape Features
4.2. ML Prediction Performances
4.3. Correlations between Four Perceptions
4.4. Validation of Complexity Score
4.5. Uneven Spatial Distribution of Perceptual Qualities
4.6. Comparison with Other Cities
4.7. Cross-Reference to Zoning Metrics
5. Conclusions
5.1. The Effectiveness of Proposed Subjective Measure Framework
5.2. Limitations and Next Steps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep Learning the City: Quantifying Urban Perception at A Global Scale. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel Demand and the 3Ds: Density, Diversity, and Design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Z. Measuring Visual Enclosure for Street Walkability: Using Machine Learning Algorithms and Google Street View Imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring Human Perceptions of a Large-Scale Urban Region Using Machine Learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. ‘Big Data’ for Pedestrian Volume: Exploring the Use of Google Street View Images for Pedestrian Counts. Appl. Geogr. 2015, 63, 337–345. [Google Scholar] [CrossRef]
- Lin, L.; Moudon, A.V. Objective versus Subjective Measures of the Built Environment, Which Are Most Effective in Capturing Associations with Walking? Health Place 2010, 16, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Naik, N.; Philipoom, J.; Raskar, R.; Hidalgo, C. Streetscore—Predicting the perceived safety of one million streetscapes. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 11–15 June 2014; pp. 793–799. [Google Scholar]
- Salesses, P.; Schechtner, K.; Hidalgo, C.A. The Collaborative Image of The City: Mapping the Inequality of Urban Perception. PLoS ONE 2013, 8, e68400. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Ma, C.; Wu, C.; Xi, Y.; Yang, R.; Peng, N.; Zhang, C.; Ren, F. Measuring Human Perceptions of Streetscapes to Better Inform Urban Renewal: A Perspective of Scene Semantic Parsing. Cities 2021, 110, 103086. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Meta-Analysis. J. Am. Plann. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; The MIT Press: Cambridge, MA, USA, 1960; Volume 11, ISBN 978-0-262-12004-3. [Google Scholar]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing Street-Level Urban Greenery Using Google Street View and a Modified Green View Index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Rundle, A.G.; Bader, M.D.M.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to Audit Neighborhood Environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yao, X.; Liu, Y.; Zhu, Y.; Chen, W.; Zhao, X.; Chi, T. Measuring Impacts of Urban Environmental Elements on Housing Prices Based on Multisource Data—A Case Study of Shanghai, China. ISPRS Int. J. Geo-Inf. 2020, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Li, W.; Zhang, Z.; Li, X.; Liu, X.; Huang, X. Subjective and Objective Measures of Streetscape Perceptions: Relationships with Property Value in Shanghai. Preprints 2021. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kominers, S.D.; Luca, M.; Naik, N. Big data and big cities: The promises and limitations of improved measures of urban life: Big data and big cities. Econ. Inq. 2018, 56, 114–137. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S.; Brownson, R.C.; Clemente, O.; Winston, E. Identifying and Measuring Urban Design Qualities Related to Walkability. J. Phys. Act. Health 2006, 3, S223–S240. [Google Scholar] [CrossRef] [PubMed]
- Herbrich, R.; Minka, T.; Graepel, T. TrueSkill: A bayesian skill rating system. In Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; pp. 569–576. [Google Scholar]
- Fu, X.; Jia, T.; Zhang, X.; Li, S.; Zhang, Y. Do Street-Level Scene Perceptions Affect Housing Prices in Chinese Megacities? An Analysis Using Open Access Datasets and Deep Learning. PLoS ONE 2019, 14, e0217505. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv, 2016; arXiv:1612.01105. [Google Scholar]
- Gong, F.-Y.; Zeng, Z.-C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping Sky, Tree, and Building View Factors of Street Canyons in a High-Density Urban Environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv, 2017; arXiv:1703.06870. [Google Scholar]
- Jain, A.K.; Chandrasekaran, B. 39 Dimensionality and sample size considerations in pattern recognition practice. In Handbook of Statistics; Classification Pattern Recognition and Reduction of Dimensionality; Elsevier: Amsterdam, The Netherlands, 1982; Volume 2, pp. 835–855. [Google Scholar]
- Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Feng, H.; Shu, Y.; Wang, S.; Ma, M. SVM-Based Models for Predicting WLAN Traffic. In Proceedings of the 2006 IEEE International Conference on Communications, Istanbul, Turkey, 11–15 June 2006; Volume 2, pp. 597–602. [Google Scholar]
- Hankey, S.; Zhang, W.; Le, H.T.K.; Hystad, P.; James, P. Predicting Bicycling and Walking Traffic Using Street View Imagery and Destination Data. Transp. Res. Part D Transp. Environ. 2021, 90, 102651. [Google Scholar] [CrossRef]
- Safat, W.; Asghar, S.; Gillani, S.A. Empirical Analysis for Crime Prediction and Forecasting Using Machine Learning and Deep Learning Techniques. IEEE Access 2021, 9, 70080–70094. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Esmaeilpoorarabi, N.; Yigitcanlar, T.; Guaralda, M. Place Quality in Innovation Clusters: An Empirical Analysis of Global Best Practices from Singapore, Helsinki, New York, and Sydney. Cities 2018, 74, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilpoorarabi, N.; Yigitcanlar, T.; Guaralda, M.; Kamruzzaman, M. Evaluating Place Quality in Innovation Districts: A Delphic Hierarchy Process Approach. Land Use Policy 2018, 76, 471–486. [Google Scholar] [CrossRef]
- Jiang, X.; Fu, W.; Li, G. Can the Improvement of Living Environment Stimulate Urban Innovation? Analysis of High-Quality Innovative Talents and Foreign Direct Investment Spillover Effect Mechanism. J. Clean. Prod. 2020, 255, 120212. [Google Scholar] [CrossRef]
- Zeng, G.; Liefner, I.; Si, Y. The Role of High-Tech Parks in China’s Regional Economy: Empirical Evidence from the IC Industry in the Zhangjiang High-Tech Park, Shanghai. Arch. Sci. Geogr. 2011, 65, 43–53. [Google Scholar] [CrossRef]
- Bevilacqua, C.; Pizzimenti, P. Urban Planning and Innovation: The Strength Role of the Urban Transformation Demand. The Case of Kendall Square in Cambridge. In New Metropolitan Perspectives; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 272–281. [Google Scholar]
- Hu, R. Urban Design Plans for Downtown San Francisco: A Paradigm Shift? J. Urban Des. 2013, 18, 517–533. [Google Scholar] [CrossRef]
- Bowles, J.; Giles, D. New Tech City; Center for an Urban Future: New York, NY, USA, 2012. [Google Scholar]
- O’Mara, M. The Environmental Contradictions of High-Tech Urbanism. In Now Urbanism; Routledge: Milton Park, UK, 2014; pp. 40–56. ISBN 978-1-315-75306-5. [Google Scholar]
- Cooke, P. Knowledge Economies: Clusters, Learning and Cooperative Advantage; Routledge: Milton Park, UK, 2002; ISBN 978-0-415-75716-4. [Google Scholar]
- Bergquist, K.; Raffo, J.; Fink, C. Identifying and Ranking the World’s Largest Clusters of Inventive Activity; WIPO Economic Research Working Papers; WIPO: Geneva, Switzerland, 2017. [Google Scholar]
- Marra, A.; Cassetta, E.; Antonelli, P. Emerging Specialisations and Software Metropolitan Clusters—A Comparative Network Analysis on San Francisco, New York and London. Int. J. Technol. Learn. Innov. Dev. 2017, 9, 17–41. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Han, H.; Kamruzzaman, M.; Ioppolo, G.; Sabatini-Marques, J. The Making of Smart Cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the Best We Could Build? Land Use Policy 2019, 88, 104187. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, H.; Fang, J.; Jiang, H.; Wang, D. Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data. Sustainability 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Jansson, C. Factors Important to Street Users’ Perceived Safety on a Main Street; Skolan För Arkitektur Och Samhällsbyggnad: Stockholm, Sweden, 2019. [Google Scholar]
- Li, X.; Zhang, C.; Li, W. Does the Visibility of Greenery Increase Perceived Safety in Urban Areas? Evidence from the Place Pulse 1.0 Dataset. ISPRS Int. J. Geo-Inf. 2015, 4, 1166–1183. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kim, S. SVM Tutorial—Classification, Regression and Ranking. In Handbook of Natural Computing; Rozenberg, G., Bäck, T., Kok, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 479–506. ISBN 978-3-540-92910-9. [Google Scholar]
- Pranckevičius, T.; Marcinkevicius, V. Comparison of naive bayes, random forest, decision tree, support vector machines, and logistic regression classifiers for text reviews classification. Balt J. Mod. Comput. 2017. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Vintage Books: New York, NY, USA, 1992; ISBN 978-0-679-74195-4. [Google Scholar]
FID | Physical Feature | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
View Index using PSPNet | |||||
1 | Sky | 32.57% | 17.61% | 0.00% | 76.20% |
2 | Buildings | 22.71% | 19.60% | 0.00% | 96.37% |
3 | Trees | 18.63% | 16.26% | 0.00% | 81.10% |
4 | Roads | 10.74% | 5.21% | 0.00% | 22.33% |
5 | Sidewalks | 2.21% | 2.48% | 0.00% | 17.57% |
6 | Walls | 1.86% | 6.42% | 0.00% | 75.05% |
7 | Fences | 1.65% | 2.26% | 0.00% | 13.13% |
8 | Overpasses | 1.58% | 7.67% | 0.00% | 57.10% |
9 | Plants | 1.24% | 2.05% | 0.00% | 14.91% |
10 | Grass | 1.10% | 2.05% | 0.00% | 13.94% |
11 | Signs | 0.65% | 1.06% | 0.00% | 7.41% |
12 | Bridges | 0.37% | 2.80% | 0.00% | 36.87% |
13 | Railings | 0.34% | 1.01% | 0.00% | 7.89% |
14 | Skyscrapers | 0.32% | 1.67% | 0.00% | 19.95% |
15 | Earth | 0.20% | 1.02% | 0.00% | 13.89% |
16 | Vans | 0.14% | 0.68% | 0.00% | 7.00% |
17 | Columns | 0.13% | 0.86% | 0.00% | 13.00% |
18 | Streetlights | 0.07% | 0.13% | 0.00% | 0.93% |
19 | Awnings | 0.04% | 0.25% | 0.00% | 2.87% |
20 | Ashcans | 0.01% | 0.07% | 0.00% | 1.05% |
21 | Windows | 0.01% | 0.05% | 0.00% | 0.80% |
22 | Booths | 0.01% | 0.03% | 0.00% | 0.66% |
23 | Sculptures | 0.01% | 0.07% | 0.00% | 1.26% |
24 | Mountains | 0.01% | 0.00% | 0.00% | 0.03% |
25 | Fountains | 0.01% | 0.02% | 0.00% | 0.41% |
Absolute counts using MASK R-CNN | |||||
26 | People | 3.11 | 4.17 | 0.00 | 37.00 |
27 | Cars | 5.56 | 5.91 | 0.00 | 39.00 |
28 | Bicycles | 0.13 | 0.46 | 0.00 | 3.00 |
29 | Motorcycles | 0.21 | 0.78 | 0.00 | 10.00 |
30 | Benches | 0.25 | 0.84 | 0.00 | 6.00 |
Model | Enclosure | Human Scale | Complexity | Imageability | ||||
---|---|---|---|---|---|---|---|---|
R2 | MAE | R2 | MAE | R2 | MAE | R2 | MAE | |
Linear Regression | 0.38 | 1.31 | 0.22 | 1.81 | 0.15 | 1.69 | 0.19 | 1.82 |
K-Nearest Neighbors (KNN) | 0.34 | 1.31 | 0.07 | 1.81 | 0.36 | 1.70 | 0.21 | 1.77 |
Support Vector Machine (SVM) | 0.41 | 1.25 | 0.24 | 1.79 | 0.48 * | 1.51 * | 0.49 * | 1.50 * |
Random Forest (RF) | 0.47 * | 1.19 * | 0.29 | 1.73 | 0.43 | 1.55 | 0.27 | 1.63 |
Decision Tree (DT) | 0.18 | 1.58 | 0.05 | 2.36 | 0.26 | 2.29 | 0.08 | 2.14 |
Voting Selection (VS) | 0.43 | 1.26 | 0.26 | 1.78 | 0.35 | 1.60 | 0.31 | 1.60 |
Gradient Boosting (GB) | 0.47 | 1.21 | 0.51 * | 1.62 * | 0.41 | 1.52 | 0.14 | 2.01 |
Adaptive Boost (ADAB) | 0.26 | 1.53 | 0.20 | 1.84 | 0.41 | 1.52 | 0.32 | 1.63 |
Enclosure | Human Scale | Complexity | Imageability | |
---|---|---|---|---|
Enclosure | 1.00 | 0.91 *** | 0.84 *** | 0.51 *** |
Human scale | 0.91 *** | 1.00 | 0.82 *** | 0.51 *** |
Complexity | 0.84 *** | 0.82 *** | 1.00 | 0.34 *** |
Imageability | 0.51 *** | 0.51 *** | 0.34 *** | 1.00 |
City | Sample | Enclosure | Human Scale | Complexity | Imageability | Avg. Score | Variance | Std. Dev. |
---|---|---|---|---|---|---|---|---|
Cambridge | 6354 | 5.36 | 5.22 | 5.57 | 5.47 | 5.41 | 2.16 | 1.47 |
London | 6019 | 5.45 | 5.10 | 5.50 | 5.24 | 5.33 | 1.22 | 1.10 |
Manhattan | 6716 | 5.70 | 5.30 | 5.45 | 5.17 | 5.40 | 1.14 | 1.07 |
San Francisco | 6410 | 5.40 | 4.79 | 5.28 | 5.38 | 5.21 | 1.41 | 1.19 |
Seattle | 6517 | 5.51 | 5.23 | 5.64 | 5.40 | 5.44 | 2.27 | 1.51 |
Shanghai | 14,274 | 4.57 | 4.33 | 4.21 | 4.68 | 4.45 | 3.38 | 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, W.; Li, W.; Liu, X.; Huang, X. Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 493. https://doi.org/10.3390/ijgi10080493
Qiu W, Li W, Liu X, Huang X. Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai. ISPRS International Journal of Geo-Information. 2021; 10(8):493. https://doi.org/10.3390/ijgi10080493
Chicago/Turabian StyleQiu, Waishan, Wenjing Li, Xun Liu, and Xiaokai Huang. 2021. "Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai" ISPRS International Journal of Geo-Information 10, no. 8: 493. https://doi.org/10.3390/ijgi10080493
APA StyleQiu, W., Li, W., Liu, X., & Huang, X. (2021). Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai. ISPRS International Journal of Geo-Information, 10(8), 493. https://doi.org/10.3390/ijgi10080493