A Survey of Scan-to-BIM Practices in the AEC Industry—A Quantitative Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
General Overview
4. Discussion
5. Conclusions
- More than 50% of participants develop work for countries other than their country of residence, which shows that remote work is a viable option for these companies, which is very important to overcome similar periods to those of COVID-19.
- Collaborative work and interoperability between professionals from different disciplines is widespread. More than 78% said projects usually involve more than one person.
- The use of BIM for reality capture projects is on the rise, with some countries having greater adoption than others. Almost 40% of professionals indicated using BIM in at least 3/5 of the projects. The United States was the country where this number was the highest (53%), followed by the United Kingdom (42%) and Australia (40%). The numbers from other countries such as Germany, Italy, Portugal, and Brazil were lower; on average, only 25% indicated using BIM in more than 60% of projects.
- The use of BIM to deal with heritage and old buildings projects proved to be limited. Only 29% indicated using BIM in at least 3/5 of the projects.
- Although the complexity of the building to be surveyed is one of the factors in choosing to use 3D laser scanning or photogrammetry to carry out the survey, it can be a factor to inhibit the use of BIM as a modeling tool, as it can become an extremely labor-intensive and time-consuming task.
- Although there are alternatives on the market, most scan-to-BIM modeling takes place manually, consuming excessive time. The use of process automation tools is still restricted to a small part of professionals, and many of them claimed not to fully trust them because they do not work for all situations and are often inaccurate.
- Although there are guides for LOD, LOA, and BIM standards, the number of people who use them to help guide the process is still limited.
- The most used BIM software for this kind of job is Autodesk Revit (89%). The most cited complementary software were Autodesk Recap (71%), Autodesk Autocad (52%), and CloudCompare (34%).
- BIM’s main benefits to the work with pre-existence pointed out by participants were working with the complete building in 3D, the precision that the tool brings to the process, and the speed in obtaining the technical plans, the possibility of working with a complete 3D model, and the detection of errors and deviations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brumana, R.; Banfi, F.; Cantini, L.; Previtali, M.; Della Torre, S. HBIM Level of Detail-Geometry-Accuracy and Survey Analysis for Architectural Preservation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Mateus, L. Contributos Para o Projecto de Conservação, Restauro e Reabilitação. Uma Metodologia Documental Baseada Na Fotogrametria Digital e No Varrimento Laser 3D Terrestres. Ph.D. Thesis, Universidade Técnica de Lisboa, Lisboa, Portugal, 2012. [Google Scholar]
- Kirby, L.; Krygiel, E.; Kim, M. Mastering Autodesk Revit 2018; Sybex: Indianapolis, IN, USA, 2017; ISBN 978-1-119-38672-8. [Google Scholar]
- Singh, V.; Gu, N.; Wang, X. A Theoretical Framework of a BIM-Based Multi-Disciplinary Collaboration Platform. Autom. Constr. 2011, 20, 134–144. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners; John Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- British Standards Institute (BSi). Investors Report: Building Information Modelling (BIM); Department of Business Innovation and Skills: London, UK, 2010. [Google Scholar]
- Smith, P. BIM Implementation–Global Strategies. Procedia Eng. 2014, 85, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Coates, P.; Arayici, Y.; Koskela, L.; Kagioglou, M.; Usher, C.; O’Reilly, K. The Key Performance Indicators of the BIM Implementation Process. In Computing in Civil and Building Engineering, Proceedings of the International Conference (ICCCBE 2010), Nottingham, UK, 30 June–2 July; Nottingham University Press: Nottingham, UK, 2010; p. 157. [Google Scholar]
- Migilinskas, D.; Popov, V.; Juocevicius, V.; Ustinovichius, L. The Benefits, Obstacles and Problems of Practical Bim Implementation. Procedia Eng. 2013, 57, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for Existing Buildings-Literature Review and Future Needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Fryskowska, A.; Stachelek, J. A No-Reference Method of Geometric Content Quality Analysis of 3D Models Generated from Laser Scanning Point Clouds for HBIM. J. Cult. Herit. 2018, 34, 95–108. [Google Scholar] [CrossRef]
- Rodríguez-Moreno, C.; Reinoso-Gordo, J.F.; Rivas-López, E.; Gómez-Blanco, A.; Ariza-López, F.J.; Ariza-López, I. From Point Cloud to BIM: An Integrated Workflow for Documentation, Research and Modelling of Architectural Heritage. Surv. Rev. 2016, 50, 212–231. [Google Scholar] [CrossRef]
- Brumana, R.; Condoleo, P.; Grimoldi, A.; Banfi, F.; Angelo Giuseppe, L.; Previtali, M. HR LOD Based HBIM to Detect Influences on Geometry and Shape by Stereotomic Construction Techniques of Brick Vaults. Appl. Geomat. 2018, 10, 529–543. [Google Scholar] [CrossRef]
- Mateus, L.; Fernández, J.; Ferreira, V.; Oliveira, C.; Aguiar, J.; Gago, A.S.; Pacheco, P.; Pernão, J. Graphical Data Flow Based in TLS and Photogrammetry for Consolidation Studies of Historical Sites. The Case Study of Juromenha Fortress in Portugal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 767–773. [Google Scholar] [CrossRef] [Green Version]
- BIMForum. Level of Development (LOD) Specification Part I & Commentary. 2019. Available online: https://bimforum.org/resources/Documents/BIMForum_LOD_2019_reprint.pdf (accessed on 17 August 2021).
- AIA. AIA Document G202™–2013, Project Building Information Modeling Protocol Form. 2013. Available online: http://architectis.it/onewebmedia/AIA%C2%AE%20Document%20G202TM%20%E2%80%93%202013.pdf (accessed on 17 August 2021).
- International Organization for Standardization. Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles (ISO Standard No. 19650-1:2018). 2018. Available online: https://www.iso.org/standard/68078.html (accessed on 17 August 2021).
- Barbosa, M.; Pauwels, P.; Ferreira, V.; Mateus, L. Towards Increased BIM Usage for Existing Building Interventions. Struct. Surv. 2016, 34, 168–190. [Google Scholar] [CrossRef]
- Rothenberg, J. The Nature of Modeling. In AI, Simulation & Modeling; Widman, L., Loparo, K., Nielsen, N., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1989; pp. 75–92. [Google Scholar]
- U.S. Institute of Building Documentation. USIBD Level of Accuracy (LOA) Specification Guide v 3.0-2019; 2019. Available online: https://usibd.org/product/level-of-accuracy-loa-specification-version-3-0/ (accessed on 17 August 2021).
- Aubin, P. Renaissance Revit; G3B Press: Oak Lawn, IL, USA, 2013. [Google Scholar]
- Murphy, M.; McGovern, E.; Pavia, S. Historic Building Information Modelling-Adding Intelligence to Laser and Image Based Surveys of European Classical Architecture. ISPRS J. Photogramm. Remote Sens. 2013, 76, 89–102. [Google Scholar] [CrossRef]
- Historic England. BIM for Heritage: Developing a Historic Building Information Model; Historic England: Swindon, UK, 2017. [Google Scholar]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of Built Heritage Modelling: Integration of HBIM and Other Information Techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Manning, R. Messner Case Studies in BIM Implementation for Programming of Healthcare Facilities. ITcon 2008, 13, 246–257. [Google Scholar]
- Mol, A.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. HBIM for Storing Life-Cycle Data Regarding Decay and Damage in Existing Timber Structures. Autom. Constr. 2020, 117, 103262. [Google Scholar] [CrossRef]
- Xu, X.; Mumford, T.; Zou, P.X.W. Life-Cycle Building Information Modelling (BIM) Engaged Framework for Improving Building Energy Performance. Energy Build. 2021, 231, 110496. [Google Scholar] [CrossRef]
- Costantino, D.; Pepe, M.; Restuccia, A.G. Scan-to-HBIM for Conservation and Preservation of Cultural Heritage Building: The Case Study of San Nicola in Montedoro Church (Italy). Appl. Geomat. 2021. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of Laser Scanner and Photogrammetry for Heritage BIM Enhancement. IJGI 2021, 10, 316. [Google Scholar] [CrossRef]
- Santagati, C.; Papacharalambous, D.; Sanfilippo, G.; Bakirtzis, N.; Laurini, C.; Hermon, S. HBIM Approach for the Knowledge and Documentation of the St. John the Theologian Cathedral in Nicosia (Cyprus). J. Archaeol. Sci. Rep. 2021, 36, 102804. [Google Scholar] [CrossRef]
- Elabd, N.M.; Mansour, Y.M.; Khodier, L.M. Utilizing Innovative Technologies to Achieve Resilience in Heritage Buildings Preservation. Dev. Built Environ. 2021, 8, 100058. [Google Scholar] [CrossRef]
- Murphy, M. Historic Building Information Modelling (HBIM). For Recording and Documenting Classical Architecture in Dublin 1700 to 1830. In Handbook of Research on Emerging Digital Tools for Architectural Surveying, Modeling, and Representation; IGI Global: Hershey, PA, USA, 2012; pp. 233–273. [Google Scholar] [CrossRef]
- Angulo-Fornos, R.; Castellano-Román, M. HBIM as Support of Preventive Conservation Actions in Heritage Architecture. Experience of the Renaissance Quadrant Façade of the Cathedral of Seville. Appl. Sci. 2020, 10, 2428. [Google Scholar] [CrossRef] [Green Version]
- Rocha; Mateus; Fernández; Ferreira A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–67. [CrossRef] [Green Version]
- Wang, Q.; Guo, J.; Kim, M.K. An Application Oriented Scan-to-Bim Framework. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Badenko, V.; Fedotov, A.; Zotov, D.; Lytkin, S.; Volgin, D.; Garg, R.D.; Liu, M. Scan-to-BIM Methodology Adapted for Different Application. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, W2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Macher, H.; Landes, T.; Grussenmeyer, P. From Point Clouds to Building Information Models: 3D Semi-Automatic Reconstruction of Indoors of Existing Buildings. Appl. Sci. 2017, 7, 1030. [Google Scholar] [CrossRef] [Green Version]
- Bassier, M.; Vergauwen, M. Topology Reconstruction of BIM Wall Objects from Point Cloud Data. Remote Sens. 2020, 12, 1800. [Google Scholar] [CrossRef]
- Ochmann, S.; Vock, R.; Wessel, R.; Klein, R. Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds. Comput. Graph. 2016, 54, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Massafra, A.; Prati, D.; Predari, G.; Gulli, R. Wooden Truss Analysis, Preservation Strategies, and Digital Documentation through Parametric 3D Modeling and HBIM Workflow. Sustainability 2020, 12, 4975. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Restuccia Garofalo, A. An Efficient Pipeline to Obtain 3D Model for HBIM and Structural Analysis Purposes from 3D Point Clouds. Appl. Sci. 2020, 10, 1235. [Google Scholar] [CrossRef] [Green Version]
- Piselli, C.; Romanelli, J.; Di Grazia, M.; Gavagni, A.; Moretti, E.; Nicolini, A.; Cotana, F.; Strangis, F.; Witte, H.J.L.; Pisello, A.L. An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy. Energies 2020, 13, 2601. [Google Scholar] [CrossRef]
- Deng, M.; Tan, Y.; Singh, J.; Joneja, A.; Cheng, J.C.P. A BIM-Based Framework for Automated Generation of Fabrication Drawings for Façade Panels. Comput. Ind. 2021, 126, 103395. [Google Scholar] [CrossRef]
- Barazzetti, L. Parametric As-Built Model Generation of Complex Shapes from Point Clouds. Adv. Eng. Inform. 2016, 30, 298–311. [Google Scholar] [CrossRef]
- Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R. The Value of Integrating Scan-to-BIM and Scan-vs-BIM Techniques for Construction Monitoring Using Laser Scanning and BIM: The Case of Cylindrical MEP Components. Autom. Constr. 2015, 49, 201–213. [Google Scholar] [CrossRef]
- Adán, A.; Quintana, B.; Prieto, S.A.; Bosché, F. Scan-to-BIM for ‘Secondary’ Building Components. Adv. Eng. Inform. 2018, 37, 119–138. [Google Scholar] [CrossRef]
- Andriasyan, M.; Moyano, J.; Nieto-Julián, J.E.; Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 2020, 12, 1094. [Google Scholar] [CrossRef] [Green Version]
- Pierdicca, R.; Paolanti, M.; Matrone, F.; Martini, M.; Morbidoni, C.; Malinverni, E.S.; Frontoni, E.; Lingua, A.M. Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage. Remote Sens. 2020, 12, 1005. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, I.; Belsky, M.; Brilakis, I. Object Boundaries and Room Detection in As-Is BIM Models from Point Cloud Data. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering, Osaka, Japan, 6–8 July 2016; pp. 968–974. [Google Scholar]
- Baik, A.; Alitany, A. From Architectural Photogrammetry toward Digital Architectural Heritage Education. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 49–54. [Google Scholar] [CrossRef] [Green Version]
- García-Fernández, J.; Mateus, L. Solution Supporting the Communication of the Built Heritage: Semi-Automatic Production Path to Transfer Semantic LIDAR Data to Minecraft Environment. Digit. Appl. Archaeol. Cult. Herit. 2019, 14, e00112. [Google Scholar] [CrossRef]
- Banfi, F. HBIM, 3D Drawing and Virtual Reality for Archaeological Sites and Ancient Ruins. Virtual Archaeol. Rev. 2020, 11, 16. [Google Scholar] [CrossRef]
- Esfahani, M.E.; Rausch, C.; Sharif, M.M.; Chen, Q.; Haas, C.; Adey, B.T. Quantitative Investigation on the Accuracy and Precision of Scan-to-BIM under Different Modelling Scenarios. Autom. Constr. 2021, 126, 103686. [Google Scholar] [CrossRef]
- Bonduel, M.; Bassier, M.; Vergauwen, M.; Pauwels, P.; Klein, R. Scan-to-Bim Output Validation: Towards a Standardized Geometric Quality Assessment of Building Information Models Based on Point Clouds. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; Copernicus GmbH: Göttingen, Germany, 2017; Volume 42, pp. 45–52. [Google Scholar] [CrossRef] [Green Version]
- de Andrade Marconi, M.; Lakatos, E.M. Fundamentos de Metodologia Científica; Atlas, S.A., Ed.; Atlas: São Paulo, Brazil, 2003. [Google Scholar]
- Ander-Egg, E. Introducción a Las Técnicas de Investigación Social Para Trabajadores Sociales; Editorial Humanitas: Buenos Aires, Argentina, 1977. [Google Scholar]
- The National Building Specification (NBS). National BIM Report 2019: The Definitive Industry Update; Royal Institute of British Architects (RIBA) Enterprises Ltd.: London, UK, 2019. [Google Scholar]
- The National Building Specification (NBS). National BIM Report 2020: The Definitive Industry Update; Royal Institute of British Architects (RIBA) Enterprises Ltd.: London, UK, 2020. [Google Scholar]
- Ullah, K.; Lill, I.; Witt, E. An Overview of BIM Adoption in the Construction Industry: Benefits and Barriers. In Proceedings of the 10th Nordic Conference on Construction Economics and Organization; Lill, I., Witt, E., Eds.; Emerald Publishing Limited: Bingley, UK, 2019; pp. 297–303. ISBN 978-1-83867-051-1. [Google Scholar]
- Gu, N.; London, K. Understanding and Facilitating BIM Adoption in the AEC Industry. Autom. Constr. 2010, 19, 988–999. [Google Scholar] [CrossRef]
- Jewell, C. Report: Australia’s a BIM Leader, but Barriers Still Remain. Available online: https://www.thefifthestate.com.au/innovation/design/report-australias-a-bim-leader-but-barriers-still-remain/ (accessed on 21 January 2021).
- The Infrastructure and Projects Authority. Government Construction Strategy 2016–2020. 2016. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/510354/Government_Construction_Strategy_2016-20.pdf (accessed on 17 August 2021).
- Lusa Portugal Atrasado na Implementação de Metodologia que Baixa Custo da Construção Civil. Available online: https://www.rtp.pt/noticias/mundo/portugal-atrasado-na-implementacao-de-metodologia-que-baixa-custo-da-construcao-civil_n1207764 (accessed on 16 January 2021).
- Brasil Decreto N° 9.377, de 17 de Maio de 2018. Diário Oficial da União 2018, 3. Available online: https://www2.camara.leg.br/legin/fed/decret/2018/decreto-9377-17-maio-2018-786731-publicacaooriginal-155623-pe.html (accessed on 17 August 2021).
- Giannasi, I. Sistema BIM é Prioridade para 70% das Incorporadoras, Mostra Estudo. 2020. Available online: https://economia.estadao.com.br/blogs/radar-imobiliario/sistema-bim-e-prioridade-para-70-das-incorporadoras-mostra-estudo/ (accessed on 17 August 2021).
- Barbosa, M. As-Built Building Information Modeling (BIM) Workflows: From Point Cloud Data to BIM. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2018. [Google Scholar]
- Nikoohemat, S.; Diakité, A.A.; Zlatanova, S.; Vosselman, G. Indoor 3D Reconstruction from Point Clouds for Optimal Routing in Complex Buildings to Support Disaster Management. Autom. Constr. 2020, 113, 103109. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, G.; Su, F.; Zuo, X.; Tang, L.; Liang, Y.; Zhu, H.; Li, L. Automatic Indoor Reconstruction from Point Clouds in Multi-Room Environments with Curved Walls. Sensors 2019, 19, 3798. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Koehl, M.; Grussenmeyer, P. Mesh-to-Bim: From Segmented Mesh Elements to Bim Model with Limited Parameters. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 1213–1218. [Google Scholar] [CrossRef] [Green Version]
- Radanovic, M.; Khoshelham, K.; Fraser, C. Geometric Accuracy and Semantic Richness in Heritage BIM: A Review. Digit. Appl. Archaeol. Cult. Herit. 2020, 19, e00166. [Google Scholar] [CrossRef]
- Baik, A. From Point Cloud to Jeddah Heritage BIM Nasif Historical House–Case Study. Digit. Appl. Archaeol. Cult. Herit. 2017, 4, 1–18. [Google Scholar] [CrossRef]
- Fai, S.; Rafeiro, J. Establishing an Appropriate Level of Detail (LOD) for a Building Information Model (BIM)-West Block, Parliament Hill, Ottawa, Canada. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 123–130. [Google Scholar] [CrossRef] [Green Version]
Country | Count | Country | Count | Country | Count | Country | Count |
---|---|---|---|---|---|---|---|
United States | 21 | Poland | 4 | New Zealand | 2 | Belarus | 1 |
India | 18 | United Arab Emirates | 4 | Belgium | 2 | Romania | 1 |
Brazil | 17 | Mexico | 3 | Uruguay | 2 | Costa Rica | 1 |
United Kingdom | 13 | Guatemala | 3 | Vietnam | 2 | Bulgaria | 1 |
Italy | 12 | Austria | 3 | Czech Republic | 1 | Indonesia | 1 |
Portugal | 9 | Canada | 3 | Barbados | 1 | Saudi Arabia | 1 |
Turkey | 9 | Lithuania | 3 | Estonia | 1 | Singapore | 1 |
Germany | 8 | Chile | 3 | Pakistan | 1 | Latvia | 1 |
Spain | 7 | Iran | 2 | Argentina | 1 | Venezuela | 1 |
Russia | 7 | Bosnia and Herzeg. | 2 | Peru | 1 | Japan | 1 |
Ukraine | 5 | N. Macedonia | 2 | Norway | 1 | Albania | 1 |
Slovakia | 4 | Colombia | 2 | Dominican Republic | 1 | Jordan | 1 |
South Africa | 4 | Switzerland | 2 | Somalia | 1 | ||
Australia | 4 | Ecuador | 2 | Iraq | 1 |
Country | Count | Country | Count | Country | Count | Country | Count |
---|---|---|---|---|---|---|---|
United States | 34 | Russia | 5 | Seychelles | 1 | Congo Rep. | 1 |
United Kingdom | 31 | United Arab Emirates | 5 | Romania | 1 | Singapore | 1 |
Germany | 18 | Iran | 4 | Laos | 1 | Norway | 1 |
Italy | 16 | Ireland | 4 | Bolivia | 1 | Belize | 1 |
Brazil | 13 | Lithuania | 4 | Estonia | 1 | Pakistan | 1 |
Australia | 10 | New Zealand | 4 | Cuba | 1 | Sweden | 1 |
India | 9 | Argentina | 3 | Finland | 1 | Paraguay | 1 |
Spain | 9 | Colombia | 3 | Cyprus | 1 | Ecuador | 1 |
Portugal | 8 | Czech Republic | 3 | Comoros | 1 | Costa Rica | 1 |
France | 8 | Belgium | 3 | Iraq | 1 | El Salvador | 1 |
Canada | 7 | Denmark | 3 | Malaysia | 1 | Philippines | 1 |
Austria | 7 | Peru | 3 | Dominican Republic | 1 | Iceland | 1 |
Poland | 6 | Luxembourg | 2 | Gabon | 1 | Belarus | 1 |
Slovakia | 6 | Israel | 2 | Kazakhstan | 1 | Vietnam | 1 |
Switzerland | 6 | Saudi Arabia | 2 | Morocco | 1 | Uzbekistan | 1 |
South Africa | 5 | Netherlands | 2 | Qatar | 1 | Japan | 1 |
Mexico | 5 | Latvia | 2 | Mozambique | 1 | Albania | 1 |
Ukraine | 5 | Chile | 2 | Indonesia | 1 | Jordan | 1 |
Turkey | 5 | Uruguay | 2 | Georgia | 1 | ||
Guatemala | 5 | Turkmenistan | 1 | Serbia | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, G.; Mateus, L. A Survey of Scan-to-BIM Practices in the AEC Industry—A Quantitative Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 564. https://doi.org/10.3390/ijgi10080564
Rocha G, Mateus L. A Survey of Scan-to-BIM Practices in the AEC Industry—A Quantitative Analysis. ISPRS International Journal of Geo-Information. 2021; 10(8):564. https://doi.org/10.3390/ijgi10080564
Chicago/Turabian StyleRocha, Gustavo, and Luís Mateus. 2021. "A Survey of Scan-to-BIM Practices in the AEC Industry—A Quantitative Analysis" ISPRS International Journal of Geo-Information 10, no. 8: 564. https://doi.org/10.3390/ijgi10080564