An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Data I—NPP-VIIRS Night Time Lights
2.1.2. Data II—MODIS Land Surface Reflectance
2.1.3. Data III—Population Migration
2.1.4. Data IV—Other
2.2. Method
- (1)
- Compare with official statistics. The work resumption rate of the enterprises above designated size is the only official data of the resumption rate. The validity of the method can be demonstrated if the work resumption index has the same trend as the official data and is lower than the official data. This is because the rate of return to work is lower for small and medium-sized enterprises than for large firms [55].
- (2)
- Give more information about whether it is consistent with the facts. During the resumption of work and production, the government issued a series of policy guidance and promotion. If our results are consistent with the time required by relevant policies, the accuracy of the method can also be verified.
3. Results
3.1. Experimental Results
3.2. Verifing Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Coronavirus. Available online: https://www.who.int/health-topics/coronavirus (accessed on 15 April 2020).
- World Health Organization (WHO). Novel Coronavirus (2019-nCoV), Situation Report—3. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200123-sitrep-3-2019-ncov.pdf (accessed on 15 April 2020).
- Kupferschmidt, K.; Cohen, J. Can China’s COVID-19 strategy work elsewhere? Science 2020, 367, 1061–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinsey & Company. COVID-19: Implications for Business. Available online: https://www.mckinsey.com/business-functions/risk/our-insights/covid-19-implications-for-business# (accessed on 15 April 2020).
- Scafa, F.; Calsamiglia, G.; Tonini, S.; Lumelli, D.; Lanfranco, A.; Gentile, E.; Berzolari, F.G.; Candura, S.M. Return to Work after Coronary Angioplasty or Heart Surgery A 5-Year Experience with the “CardioWork” Protocol. J. Occup. Environ. Med. 2012, 54, 1545–1549. [Google Scholar] [CrossRef] [PubMed]
- Nishino, A.; Sakurai, Y.; Tsuji, I.; Arai, H.; Uenohara, H.; Suzuki, S.; Li, J.H. Resumption of work after aneurysmal subarachnoid hemorrhage in middle-aged Japanese patients. J. Neurosurg. 1999, 90, 59–64. [Google Scholar] [CrossRef]
- Nie, L.; Fu, J.; Yi, C.; Yang, D. Measuring Enterprise’s Offline Resumption with Mobile Device Positioning Data. Data Anal. Knowl. Discov. 2020, 4, 38–49. [Google Scholar]
- Gan, M.; Tian, Y.; Zhang, W.; Zhao, X. Modeling and Relevance Analysis of Urban Epidemic Transmission and Work Resumption Intensity. J. Syst. Simul. 2020, 32, 2258. [Google Scholar]
- Xu, X.L.; Wang, S.H.; Dong, J.H.; Shen, Z.C.; Xu, S.W. An analysis of the domestic resumption of social production and life under the COVID-19 epidemic. PLoS ONE 2020, 15, e0236387. [Google Scholar] [CrossRef]
- Li, J.; Chu, B.; Chai, N.; Wu, B.; Shi, B.; Ou, F. Work resumption rate and migrant workers’ income during the COVID-19 Pandemic. Front. Public Health 2021, 9, 464. [Google Scholar]
- Cao, C.; Chang, C.; Xu, M.; Zhao, J.; Gao, M.; Zhang, H.; Guo, J.; Guo, J.; Dong, L.; He, Q. Epidemic risk analysis after the Wenchuan Earthquake using remote sensing. Int. J. Remote Sens. 2010, 31, 3631–3642. [Google Scholar] [CrossRef]
- Yang, C.; Yu, M.; Li, Y.; Hu, F.; Jiang, Y.; Liu, Q.; Sha, D.; Xu, M.; Gu, J. Big Earth data analytics: A survey. Big Earth Data 2019, 3, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.F.; Xu, Z.B.; Tang, L.N.; Sun, L. Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources. Ecol. Indic. 2021, 121, 107177. [Google Scholar] [CrossRef]
- Li, F.G.; Li, E.Z.; Zhang, C.; Samat, A.; Liu, W.; Li, C.M.; Atkinson, P.M. Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data. Remote Sens. 2021, 13, 212. [Google Scholar] [CrossRef]
- Xia, N.; Li, M.; Cheng, L. Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia. Land 2021, 10, 185. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Sutton, P.; Roberts, C.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental united states. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Guo, B.; Bian, Y.; Zhang, D.M.; Su, Y.; Wang, X.X.; Zhang, B.; Wang, Y.; Chen, Q.J.; Wu, Y.R.; Luo, P.P. Estimating Socio-Economic Parameters via Machine Learning Methods Using Luojia1-01 Nighttime Light Remotely Sensed Images at Multiple Scales of China in 2018. IEEE Access 2021, 9, 34352–34365. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.R.; Chen, X.L. Satellite-Observed Nighttime Light Variation as Evidence for Global Armed Conflicts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2302–2315. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Yu, B.L.; Liu, Y.; Yao, S.J.; Lian, T.; Chen, L.J.; Yang, C.S.; Chen, Z.Q.; Wu, J.P. NPP-VIIRS DNB Daily Data in Natural Disaster Assessment: Evidence from Selected Case Studies. Remote Sens. 2018, 10, 1526. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Ghosh, T.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Katada, N.S.; Penalosa, W.; Hung, B.Q. Rating the Effectiveness of Fishery Closures With Visible Infrared Imaging Radiometer Suite Boat Detection Data. Front. Mar. Sci. 2018, 5, 132. [Google Scholar] [CrossRef]
- Sarangi, R.K.; Jaiganesh, S.N.N. VIIRS boat detection (VBD) product-based night time fishing vessels observation in the Arabian Sea and Bay of Bengal Sub-regions. Geocarto Int. 2021. [Google Scholar] [CrossRef]
- Roman, M.O.; Stokes, E.C. Holidays in lights: Tracking cultural patterns in demand for energy services. Earths Future 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Chen, J.D.; Gao, M.; Cheng, S.L.; Liu, X.; Hou, W.X.; Song, M.L.; Li, D.; Fan, W. China’s city-level carbon emissions during 1992–2017 based on the inter-calibration of nighttime light data. Sci. Rep. 2021, 11, 1–13. [Google Scholar]
- Lu, X.M.; Zhang, X.Y.; Li, F.J.; Cochrane, M.A.; Ciren, P. Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions. Remote Sens. 2021, 13, 196. [Google Scholar] [CrossRef]
- Liu, H.; Ma, L.; Xu, L. Estimating spatiotemporal dynamics of county-level fossil fuel consumption based on integrated nighttime light data. J. Clean. Prod. 2021, 278, 123427. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.-C.; Ghosh, T. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- Hudecheck, M.; Sirén, C.; Grichnik, D.; Wincent, J. Monitoring the COVID-19 crisis from space. MIT Sloan Manag. Rev. 2020, 1–11. Available online: https://sloanreview.mit.edu/article/monitoring-the-COVID-19-crisis-from-space/ (accessed on 16 August 2020).
- Beyer, R.C.; Franco-Bedoya, S.; Galdo, V. Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity. World Dev. 2021, 140, 105287. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.D.; Straka, W.C.; Yue, J.; Seaman, C.J.; Xu, S.; Elvidge, C.D.; Hoffmann, L.; Azeem, I. The Dark Side of Hurricane Matthew Unique Perspectives from the VIIRS Day/Night Band. Bull. Am. Meteorol. Soc. 2018, 99, 2561–2574. [Google Scholar] [CrossRef]
- Li, X.; Li, D.R.; Xu, H.M.; Wu, C.Q. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Straka, W.; Kondragunta, S.; Wei, Z.; Zhang, H.; Miller, S.D.; Watts, A. Examining the Economic and Environmental Impacts of COVID-19 Using Earth Observation Data. Remote Sens. 2020, 13, 5. [Google Scholar] [CrossRef]
- Anand, A.; Kim, D.-H. Pandemic Induced Changes in Economic Activity around African Protected Areas Captured through Night-Time Light Data. Remote Sens. 2021, 13, 314. [Google Scholar] [CrossRef]
- Liu, Q.; Sha, D.X.; Liu, W.; Houser, P.; Zhang, L.Y.; Hou, R.Z.; Lan, H.; Flynn, C.; Lu, M.Y.; Hu, T.; et al. Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sens. 2020, 12, 1576. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ghosh, T.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M. The Dimming of Lights in China during the COVID-19 Pandemic. Remote Sens. 2020, 12, 2851. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Hsu, F.-C.; Baugh, K.E.; Ghosh, T. National trends in satellite-observed lighting 1992–2012. In Global Urban Monitoring and Assessment through Earth Observation; Weng, Q., Ed.; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2014; Volume 23, pp. 97–118. [Google Scholar]
- Lan, T.; Shao, G.; Tang, L.; Xu, Z.; Zhu, W.; Liu, L. Quantifying spatiotemporal changes in human activities induced by COVID-19 pandemic using daily nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2740–2753. [Google Scholar] [CrossRef]
- Yin, R.; He, G.; Jiang, W.; Peng, Y.; Zhang, Z.; Li, M.; Gong, C. Night-Time Light Imagery Reveals China’s City Activity During the COVID-19 Pandemic Period in Early 2020. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5111–5122. [Google Scholar] [CrossRef]
- Roman, M.O.; Wang, Z.S.; Sun, Q.S.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Shao, G.F.; Tang, L.N.; He, Y.R.; Wang, X.R.; Wang, Y.N.; Wang, H.W. Rapid Assessment of a Typhoon Disaster Based on NPP-VIIRS DNB Daily Data: The Case of an Urban Agglomeration along Western Taiwan Straits, China. Remote Sens. 2019, 11, 1709. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- National Basic Geographic Information Center. 2013 China Administrative Region Regionalization Data Set; National Basic Geographic Information Center: Beijing, China, 2017. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.C.; Liu, H.; Wang, J.; Bai, Y.Q.; Chen, J.M.; Chen, X.; Fang, L.; Feng, S.L.; et al. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Turner, R.E. A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime Environmental Applications. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2316–2329. [Google Scholar] [CrossRef]
- Cao, C.Y.; Shao, X.; Uprety, S. Detecting Light Outages After Severe Storms Using the S-NPP/VIIRS Day/Night Band Radiances. IEEE Trans. Geosci. Remote Sens. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M. Nighttime lights compositing using the VIIRS day-night band: Preliminary results. Proc. Asia-Pac. Adv. Netw. 2013, 35, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Stokes, E.C.; Seto, K.C. Characterizing urban infrastructural transitions for the Sustainable Development Goals using multi-temporal land, population, and nighttime light data. Remote Sens. Environ. 2019, 234, 111430. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.M.; Chen, X.L.; Li, C. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef] [Green Version]
- Dai, R.; Feng, H.; Hu, J.; Jin, Q.; Li, H.; Wang, R.; Wang, R.; Xu, L.; Zhang, X. The impact of COVID-19 on small and medium-sized enterprises (SMEs): Evidence from two-wave phone surveys in China. China Econ. Rev. 2021, 67, 101607. [Google Scholar] [CrossRef]
- Li, X.; Ma, R.Q.; Zhang, Q.L.; Li, D.R.; Liu, S.S.; He, T.; Zhao, L.X. Anisotropic characteristic of artificial light at night—Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 2019, 233, 111357. [Google Scholar] [CrossRef]
- The People’s Government of Beijing Municipality. Beijing Municipal Bureau of Urban Management and Comprehensive Administrative Law Enforcement, Beijing Municipal Housing and Urban-Rural Development Commission, Beijing Municipal Emergency Management Bureau, Beijing Municipal Health and Wellness Commission, and Beijing Municipal Market Supervision Bureau on Further Clarifying the Requirements of Epidemic Prevention for Units Working in Commercial Buildings. Available online: http://www.beijing.gov.cn/zhengce/zhengcefagui/202002/t20200224_1667875.html (accessed on 16 August 2021).
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 52. Available online: https://apps.who.int/iris/handle/10665/331476 (accessed on 16 August 2021).
- Lu, Y.; Wu, J.; Peng, J.; Lu, L. The perceived impact of the Covid-19 epidemic: Evidence from a sample of 4807 SMEs in Sichuan Province, China. Environ. Hazards 2020, 19, 323–340. [Google Scholar] [CrossRef]
- Davis, R. Shanghai Disney Resort, Closed in January due to Coronavirus, Set to Partially Reopen Monday. Available online: https://variety.com/2020/biz/news/shanghai-disney-resort-disneyland-reopen-china-coronavirus-1203527299/ (accessed on 15 April 2020).
- Levin, N.; Kyba, C.C.M.; Zhang, Q.L.; de Miguel, A.S.; Roman, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Bustamante-Calabria, M.; Sánchez de Miguel, A.; Martín-Ruiz, S.; Ortiz, J.-L.; Vílchez, J.M.; Pelegrina, A.; García, A.; Zamorano, J.; Bennie, J.; Gaston, K.J. Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sens. 2021, 13, 258. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F. Evidence that reduced air and road traffic decreased artificial night-time skyglow during COVID-19 lockdown in Berlin, Germany. Remote Sens. 2020, 12, 3412. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, J.; Langerock, B.; Dils, B.; Sha, M.K.; De Mazière, M. Change of CO Concentration Due to the COVID-19 Lockdown in China Observed by Surface and Satellite Observations. Remote Sens. 2021, 13, 1129. [Google Scholar] [CrossRef]
- De Miguel, A.S.; Kyba, C.C.; Zamorano, J.; Gallego, J.; Gaston, K.J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Yu, M.Z.; Bambacus, M.; Cervone, G.; Clarke, K.; Duffy, D.; Huang, Q.Y.; Li, J.; Li, W.W.; Li, Z.L.; Liu, Q.; et al. Spatiotemporal event detection: A review. Int. J. Digit. Earth 2020, 13, 1339–1365. [Google Scholar] [CrossRef] [Green Version]
10–16 February | 17–23 February | 24 February–1 March | 2–8 March | 9–15 March | 16–22 March | 23–29 March | ||
---|---|---|---|---|---|---|---|---|
Some provincial capitals | Beijing | −6.29% | 8.45% | 19.43% | 25.86% | 35.09% | 54.79% | 55.63% |
Tianjin | −14.00% | 7.26% | 30.45% | 41.63% | 49.69% | 70.01% | 74.94% | |
Zhengzhou | 3.86% | 17.51% | 19.01% | 38.77% | 44.29% | 55.64% | 58.64% | |
Wuhan | 4.92% | 23.99% | 16.80% | 0.18% | 5.53% | 4.83% | 12.72% | |
Changsha | 8.45% | 23.51% | 45.31% | 56.04% | 56.11% | 61.60% | 75.20% | |
Chongqing | 5.44% | −6.12% | 25.23% | 39.53% | 56.81% | 72.49% | 79.36% | |
Chengdu | 5.89% | 12.52% | 29.00% | 56.56% | 67.75% | 69.73% | 84.13% | |
Kunming | 5.28% | 11.83% | 24.89% | 35.02% | 44.30% | 51.48% | 56.37% | |
Xi’an | −0.13% | 7.70% | 15.93% | 41.81% | 50.70% | 63.88% | 60.27% | |
Yangtze River Delta cities | Shanghai | 20.39% | 35.48% | 41.86% | 65.22% | 73.30% | 101.27% | 121.74% |
Nanjing | 23.89% | 47.01% | 37.30% | 69.67% | 74.54% | 95.73% | 103.99% | |
Suzhou | 27.22% | 59.13% | 47.93% | 67.51% | 68.88% | 95.42% | 121.25% | |
Hangzhou | 18.20% | 39.48% | 43.45% | 58.54% | 76.22% | 87.01% | 88.37% | |
Ningbo | 10.58% | 98.64% | 51.18% | 80.53% | 91.87% | 119.24% | 93.31% | |
Wenzhou | 20.96% | 61.79% | 44.77% | 61.96% | 79.14% | 86.64% | 96.27% | |
Pearl River Delta cities | Guangzhou | 1.35% | 20.81% | 35.64% | 54.98% | 64.01% | 69.28% | 74.65% |
Shenzhen | 17.65% | 38.13% | 58.14% | 58.45% | 68.75% | 74.60% | 81.66% | |
Foshan | −2.30% | 26.60% | 56.32% | 66.64% | 76.96% | 81.30% | 85.42% | |
Huizhou | 6.99% | 30.71% | 44.79% | 53.12% | 65.18% | 71.89% | 80.70% | |
Dongguan | 13.40% | 37.54% | 59.28% | 63.15% | 72.78% | 78.19% | 84.77% | |
Zhongshan | 2.67% | 33.34% | 65.72% | 67.27% | 77.59% | 82.64% | 87.41% |
10–16 February | Late February | Early March | Late March | |
---|---|---|---|---|
Hebei | 0.46% | 14.24% | 35.83% | 67.21% |
Shanxi | 1.73% | 22.71% | 41.28% | 65.60% |
Jiangsu | 12.22% | 51.94% | 61.79% | 89.74% |
Shandong | 6.02% | 38.16% | 61.15% | 92.53% |
Henan | 4.45% | 25.34% | 49.97% | 66.33% |
Hunan | 9.15% | 28.83% | 47.38% | 57.07% |
Shaanxi | 1.22% | 22.42% | 52.78% | 64.19% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Feng, R.; Zhao, J.; Wang, L. An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data. ISPRS Int. J. Geo-Inf. 2021, 10, 614. https://doi.org/10.3390/ijgi10090614
Tian S, Feng R, Zhao J, Wang L. An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data. ISPRS International Journal of Geo-Information. 2021; 10(9):614. https://doi.org/10.3390/ijgi10090614
Chicago/Turabian StyleTian, Suzheng, Ruyi Feng, Ji Zhao, and Lizhe Wang. 2021. "An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data" ISPRS International Journal of Geo-Information 10, no. 9: 614. https://doi.org/10.3390/ijgi10090614
APA StyleTian, S., Feng, R., Zhao, J., & Wang, L. (2021). An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data. ISPRS International Journal of Geo-Information, 10(9), 614. https://doi.org/10.3390/ijgi10090614