An Exploration of Loess Landform Development Based on Population Ecology Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Gully System Extraction and Classification
2.2.2. Quantitative Characteristics of the Gully System
- (1)
- Number Density
- (2)
- Length Density
- (3)
- Dominant Gully Type
- (4)
- Age Structure
- (5)
- Convergence Structure
3. Results
3.1. Gully System Extraction Results
3.2. Quantitative Characteristics of the Gully System
3.2.1. Number Density
3.2.2. Length Distribution
3.2.3. Length Density
3.2.4. Dominant Type
3.3. Spatial Structure of the Gully System
3.3.1. Age Structure
3.3.2. Convergent Relationship
4. Discussion
4.1. Comparison with Hypsometric Integral
4.2. Predisposing Factors Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, L.; Tang, G.; Yuan, B.; Lu, Z.; Li, F.; Zhang, L. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models. Sci. China Earth Sci. 2014, 57, 1944–1952. [Google Scholar] [CrossRef]
- Tang, G.; Li, F.; Liu, X.; Long, Y.; Yang, X. Research on the slope spectrum of the Loess Plateau. Sci. China Ser. E Technol. Sci. 2008, 51, 175–185. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021, 31, 456–476. [Google Scholar] [CrossRef]
- Maat, P.B.; Johnson, W.C. Thermoluminescence and new 14C age estimates for late Quaternary loesses in southwestern Nebraska. Geomorphology 1996, 17, 115–128. [Google Scholar] [CrossRef]
- Lai, Z.-P.; Wintle, A.G. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence. Holocene 2006, 16, 893–899. [Google Scholar] [CrossRef]
- Pan, B.; Hu, Z.; Wang, J.; Vandenberghe, J.; Hu, X. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology 2011, 125, 225–238. [Google Scholar] [CrossRef]
- Wang, X.; Ayers, J.C.; Katsiaficas, N.J. Zircon geochronology of loess and alluvial sediment: Implications for provenance of modern soils of Middle Tennessee. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. pp. EP21D-3569. [Google Scholar]
- Qiang-Guo, C. Soil erosion and management on the Loess Plateau. J. Geogr. Sci. 2001, 11, 53–70. [Google Scholar] [CrossRef]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth-Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Song, X.; Li, F.; Zhang, Y.; Xiong, L. Slope spectrum critical area and its spatial variation in the Loess Plateau of China. J. Geogr. Sci. 2015, 25, 1452–1466. [Google Scholar] [CrossRef] [Green Version]
- Davis, W.M. The geographical cycle. In Climatic Geomorphology; Palgrave: London, UK, 1973; pp. 19–50. [Google Scholar]
- Miller, A.A. Climate and the geomorphic cycle: Address to the Geographical Association. Geography 1961, 46, 185–197. [Google Scholar]
- Oertel, G.F. Geomorphic cycles in ebb deltas and related patterns of shore erosion and accretion. J. Sediment. Res. 1977, 47, 1121–1131. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol. Soc. Am. Bull. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Tanner, W.F. Examples of departure from the Gaussian in geomorphic analysis. Am. J. Sci. 1959, 257, 458–460. [Google Scholar] [CrossRef]
- Scheidegger, A.E. Theoretical Geomorphology; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Evans, I.S. General geomorphometry, derivatives of altitude, and descriptive statistics. In Spatial Analysis in Geomorphology; Routledge: Abington-on-Thames, UK, 2019; pp. 17–90. [Google Scholar]
- Harlin, J.M. Statistical moments of the hypsometric curve and its density function. J. Int. Assoc. Math. Geol. 1978, 10, 59–72. [Google Scholar] [CrossRef]
- Li, S.; Hu, G.; Cheng, X.; Xiong, L.; Tang, G.; Strobl, J. Integrating topographic knowledge into deep learning for the void-filling of digital elevation models. Remote Sens. Environ. 2022, 269, 112818. [Google Scholar] [CrossRef]
- Lazzari, M. High-resolution LiDAR-derived DEMs in hydrografic network extraction and short-time landscape changes. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; pp. 723–737. [Google Scholar]
- Cheng, H.; Zou, X.; Wu, Y.; Zhang, C.; Zheng, Q.; Jiang, Z. Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China. Soil Tillage Res. 2007, 94, 4–14. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, J.; Wang, L.; Fang, X.; Wagner, W. Regional features of topographic relief over the Loess Plateau, China: Evidence from ensemble empirical mode decomposition. Front. Earth Sci. 2020, 14, 695–710. [Google Scholar] [CrossRef]
- Hughes, M.W.; Schmidt, J.; Almond, P.C. Automatic landform stratification and environmental correlation for modelling loess landscapes in North Otago, South Island, New Zealand. Geoderma 2009, 149, 92–100. [Google Scholar] [CrossRef]
- Zhao, W.-F.; Xiong, L.-Y.; Ding, H.; Tang, G.-A. Automatic recognition of loess landforms using Random Forest method. J. Mt. Sci. 2017, 14, 885–897. [Google Scholar] [CrossRef]
- Willett, S.D.; McCoy, S.W.; Perron, J.T.; Goren, L.; Chen, C.-Y. Dynamic reorganization of river basins. Science 2014, 343, 1116–1126. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Dai, Z.; Yang, X.; Cui, X.; Luo, L. Spatial variation of gully development in the loess plateau of China based on the morphological perspective. Earth Sci. Inform. 2020, 13, 1103–1117. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.; Yang, S.; Li, H.; Ma, H. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena 2017, 148, 195–203. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Zheng, F.; Qin, C.; He, X. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique. Earth Surf. Process. Landf. 2018, 43, 1701–1710. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, S.; Zhao, C.; Lou, H.; Chen, K.; Zhang, C.; Wu, B. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau. Soil Tillage Res. 2021, 205, 104800. [Google Scholar] [CrossRef]
- Qin, C.; Zheng, F.; Xu, X.; Wu, H. Active stage gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique. Earth Surf. Process. Landf. 2017, 43. [Google Scholar]
- Li, J.; Xiong, L. Combined gully profiles for expressing surface morphology and evolution of gully landforms. Front. Earth Sci. 2019, 13, 551–562. [Google Scholar] [CrossRef]
- Na, J.; Ding, H.; Zhao, W.; Liu, K.; Tang, G.; Pfeifer, N. Object-based large-scale terrain classification combined with segmentation optimization and terrain features: A case study in China. Trans GIS. 2021, 25, 2939–2962. [Google Scholar] [CrossRef]
- Huang, X.; Tang, G.; Zhu, T.; Ding, H.; Na, J. Space-for-time substitution in geomorphology. J Geogr Sci. 2019, 29, 1670–1680. [Google Scholar] [CrossRef] [Green Version]
- Na, J.; Yang, X.; Dai, W.; Li, M.; Xiong, L.; Zhu, R.; Tang, G. Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area. Phys. Geogr. 2018, 39, 368–386. [Google Scholar] [CrossRef]
- Xiong, L.-Y.; Tang, G.-A.; Li, F.-Y.; Yuan, B.-Y.; Lu, Z.-C. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology 2014, 209, 18–26. [Google Scholar] [CrossRef]
- Xiong, L.Y.; Tang, G.A.; Strobl, J.; Zhu, A.X. Paleotopographic controls on loess deposition in the Loess Plateau of China. Earth Surf. Process. Landf. 2016, 41, 1155–1168. [Google Scholar] [CrossRef]
- Na, J.; Yang, X.; Tang, G.; Dang, W.; Strobl, J. Population characteristics of loess gully system in the Loess Plateau of China. Remote Sens. 2020, 12, 2639. [Google Scholar] [CrossRef]
- Yang, X.; Na, J.; Tang, G.; Wang, T.; Zhu, A. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China. Front. Earth Sci. 2019, 13, 151–168. [Google Scholar] [CrossRef]
- Xiaoyan, W.; Fujiang, H.; Zhibiao, N. Grazing systems on loess soils: Options in Huanxian county, Gansu province. In Development of Sustainable Livestock Systems on Grasslands in North-Western China; ACIAR Proceedings No. 134; Australian Centre for International Agricultural Research: Canberra, ACT, Australia, 2011; pp. 46–57. [Google Scholar]
- Xiong, L.-Y.; Tang, G.-A. Reconstruction of the loess underlying paleotopography for loess landform inheritance. In Loess Landform Inheritance: Modeling and Discovery; Springer: Berlin/Heidelberg, Germany, 2019; pp. 75–133. [Google Scholar]
- Kumawat, A.; Yadav, D.; Samadharmam, K.; Rashmi, I. Soil and water conservation measures for agricultural sustainability. In Soil Moisture Importance; IntechOpen: London, UK, 2020. [Google Scholar]
- Dai, W.; Hu, G.-H.; Yang, X.; Yang, X.-W.; Cheng, Y.-H.; Xiong, L.-Y.; Strobl, J.; Tang, G.-A. Identifying ephemeral gullies from high-resolution images and DEMs using flow-directional detection. J. Mt. Sci. 2020, 17, 3024–3038. [Google Scholar] [CrossRef]
- Strahler, A.N. Dynamic basis of geomorphology. Geol. Soc. Am. Bull. 1952, 63, 923–938. [Google Scholar] [CrossRef]
- Singh, O.; Sarangi, A.; Sharma, M.C. Hypsometric integral estimation methods and its relevance on erosion status of north-western lesser Himalayan watersheds. Water Resour. Manag. 2008, 22, 1545–1560. [Google Scholar] [CrossRef]
- Dowling, T.; Walker, J.; Richardson, D.P.; O’Sullivan, A.; Summerell, G.K. Application of the Hypsometric Integral and Other Terrain Based Metrics as Indicators of Catchment Health: A Preliminary Analysis; CSIRO, Land and Water: Canberra, ACT, Australia, 1998. [Google Scholar]
- Zhang, T. The Loess Plateau Thesis; China Environmental Science Press: Beijing, China, 1993. [Google Scholar]
- Pourghasemi, H.R.; Sadhasivam, N.; Kariminejad, N.; Collins, A.L. Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process. Geosci. Front. 2020, 11, 2207–2219. [Google Scholar] [CrossRef]
Linjiajian | Wangjiagou | Yangjiaju | |
---|---|---|---|
Location | 110°18′04″–110°22′04″ E 37°32′47″–37°34′47″ N | 106°57′14″–106°59′26″ E 36°13′23″–36°16′22″ N | 106°37′55″–106°40′25″ E 36°43′28″–36°46′10″ N |
Area (km2) | 12.40 | 12.08 | 12.72 |
Elevation (m) | 867–1186 | 1424–1751 | 1643–1997 |
Gully Type | Hillslope Ephemeral Gully | Bank Gully | Valley | Total | ||||
---|---|---|---|---|---|---|---|---|
Total | First Level | Second Level | Third Level | Fourth Level | ||||
Linjiajian | 2307 | 1531 | 396 | 319 | 61 | 12 | 4 | 4630 |
Wangjiagou | 3479 | 308 | 141 | 111 | 24 | 4 | 2 | 4069 |
Yangjiaju | 2123 | 487 | 191 | 148 | 34 | 7 | 2 | 2992 |
Gully Type | Hillslope Ephemeral Gully | Bank Gully | Valley Gully | ||
---|---|---|---|---|---|
Convergent Relationship | Hillslope → Bank | Hillslope → Valley | Bank → Valley | ||
Linjiajian | Number | 1725 | 582 | 1531 | 396 |
Proportion | 75% | 25% | 100% | — | |
Total number | 2307 | 1531 | 396 | ||
Wangjiagou | Number | 955 | 2426 | 308 | |
Proportion | 27% | 70% | 100% | ||
Total number | 3479 | 308 | 141 | ||
Yangjiaju | Number | 917 | 1206 | 487 | |
Proportion | 43% | 57% | 100% | ||
Total number | 2123 | 487 | 191 |
Convergent Relationship | Bank Gully to Valley Gully | ||||
---|---|---|---|---|---|
First Level | Second Level | Third Level | Fourth Level | ||
Linjiajian | Number | 969 | 331 | 133 | 106 |
Proportion | 63% | 22% | 9% | 7% | |
Wangjiagou | Number | 94 | 133 | 70 | 9 |
Proportion | 31% | 43% | 23% | 3% | |
Yangjiaju | Number | 176 | 165 | 101 | 45 |
Proportion | 36% | 34% | 21% | 9% |
Level | First | Second | Third | ||||
---|---|---|---|---|---|---|---|
Convergent Relationship | 1st → 2nd | 1st → 3rd | 1st → 4th | 2nd → 3rd | 2nd → 4th | 3rd → 4th | |
Linjiajian | Number | 220 | 53 | 46 | 41 | 20 | 15 |
Proportion | 69% | 17% | 14% | 67% | 33% | 100% | |
Total number | 319 | 61 | 15 | ||||
Wangjiagou | Number | 78 | 25 | 8 | 18 | 6 | 4 |
Proportion | 70% | 23% | 7% | 75% | 25% | 100% | |
Total number | 111 | 24 | 4 | ||||
Yangjiaju | Number | 116 | 19 | 14 | 23 | 11 | 7 |
Proportion | 78% | 13% | 9% | 68% | 32% | 100% | |
Total number | 149 | 34 | 7 |
Predisposing Factors | Linjiajian | Yangjiaju | Wangjiagou | |
---|---|---|---|---|
Soil constitution | clay | 14% | 14% | 14% |
silt | 32% | 32% | 32% | |
sand | 54% | 54% | 54% | |
Soil type | Huang mian soil | Huang mian soil | Huang mian soil | |
Erosion type | water erosion | water erosion | water erosion | |
Average annual rainfall (mm/year) | 479 | 180 | 425 | |
Loess depth (m) | 80.30 | 75.99 | 190.38 | |
Average slope (°) | 34.63 | 27.26 | 27.59 |
Aspect | Shady Slope | Semi-Shady Slope | Sunny Slope | Semi-Sunny Slope |
---|---|---|---|---|
Linjiajian | 0.24 | 0.24 | 0.21 | 0.30 |
Yangjiaju | 0.11 | 0.44 | 0.12 | 0.34 |
Wangjiagou | 0.22 | 0.34 | 0.19 | 0.24 |
Land Use | Cropland | Forest | Grassland | Impervious Area | Bareland |
---|---|---|---|---|---|
Linjiajian | 0.16 | 0.01 | 0.22 | 0.16 | 0.45 |
Yangjiaju | 0.01 | 0 | 0.56 | 0 | 0.42 |
Wangjiagou | 0.57 | 0.01 | 0.26 | 0 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Yang, X.; Na, J. An Exploration of Loess Landform Development Based on Population Ecology Method. ISPRS Int. J. Geo-Inf. 2022, 11, 104. https://doi.org/10.3390/ijgi11020104
Yang L, Yang X, Na J. An Exploration of Loess Landform Development Based on Population Ecology Method. ISPRS International Journal of Geo-Information. 2022; 11(2):104. https://doi.org/10.3390/ijgi11020104
Chicago/Turabian StyleYang, Ling, Xin Yang, and Jiaming Na. 2022. "An Exploration of Loess Landform Development Based on Population Ecology Method" ISPRS International Journal of Geo-Information 11, no. 2: 104. https://doi.org/10.3390/ijgi11020104
APA StyleYang, L., Yang, X., & Na, J. (2022). An Exploration of Loess Landform Development Based on Population Ecology Method. ISPRS International Journal of Geo-Information, 11(2), 104. https://doi.org/10.3390/ijgi11020104