Quantitative Analysis of the Factors Influencing the Spatial Distribution of Benggang Landforms Based on a Geographical Detector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Geographical Detector Method
2.4. Processing of Influencing Factors
3. Results
3.1. Distribution Characteristics of Benggang Erosion in Ganzhou City
3.2. Distribution Characteristics of Benggang Erosion Influencing Factors
3.3. Benggang Factor Influence Analysis
3.4. Benggang Factor Interaction Analysis
4. Discussion
4.1. Impact Factor Contribution Analysis
4.2. Multifactor Interaction Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.L.; Yuan, Z.J.; Li, D.Q.; Zheng, M.G.; Liao, Y.S.; Cai, Q.Q.; Huang, Y.H.; Cai, C.F.; Niu, D.K.; Wang, Z.G. Discussion of the “Benggang” Concept and Its English Translation. Sci. Soil Water Conserv. 2020, 18, 136–143. [Google Scholar]
- Liu, X.L. Benggang Erosion Landform and Research Progress in a Global Perspective. Prog. Geogr. 2018, 37, 342–351. [Google Scholar]
- Cai, L.P.; Liu, M.X.; Hou, X.L.; Wu, P.F.; Ma, X.Q. Comparison of Plant Diversity among Different Governance Models in Collapsing Gully Erosion Area of Changting County. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2012, 41, 524–528. [Google Scholar]
- Liu, X.L.; Zhang, D.L. Grain-Size Properties and Morphologic Patterns of Channelized Flows in a Benggang Catchment of Southern China. Z. Für Geomorphol. 2018, 61, 303–314. [Google Scholar] [CrossRef]
- Li, C.; Kong, L.; Shu, R.; An, R.; Zhang, X. Disintegration Characteristics in Granite Residual Soil and Their Relationship with the Collapsing Gully in South China. Open Geosci. 2020, 12, 1116–1126. [Google Scholar] [CrossRef]
- Huang, B.F.; Qiu, M.; Lin, J.S.; Chen, J.; Jiang, F.; Wang, M.K.; Ge, H.L.; Huang, Y.H. Correlation between Shear Strength and Soil Physicochemical Properties of Different Weathering Profiles of the Non-Eroded and Collapsing Gully Soils in Southern China. J. Soils Sediments 2019, 19, 3832–3846. [Google Scholar] [CrossRef]
- Xu, J.X. Benggang Erosion: The Influencing Factors. Catena 1996, 27, 249–263. [Google Scholar] [CrossRef]
- Zhang, P.; Zha, X. The Research Progress on Collapsed Gully Erosion. Res. Soil Water Conserv. 2007, 14, 170–172. [Google Scholar]
- Liao, Y.S.; Zheng, M.G.; Li, D.Q.; Wu, X.L.; Liang, C.; Nie, X.D.; Huang, B.; Xie, Z.Y.; Yuan, Z.J.; Tang, C.Y. Relationship of Benggang Number, Area, and Hypsometric Integral Values at Different Landform Developmental Stages. Land Degrad. Dev. 2020, 31, 2319–2328. [Google Scholar] [CrossRef]
- Liao, K.T.; Song, Y.J.; Xie, S.H.; Zheng, H.J. Monitoring of Benggang Erosion Based on UAV Photogrammetry Technology. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 330, p. 052003. [Google Scholar]
- Deng, Y.S.; Cai, C.F.; Xia, D.; Ding, S.W.; Chen, J.Z.; Wang, T.W. Soil Atterberg Limits of Different Weathering Profiles of the Collapsing Gullies in the Hilly Granitic Region of Southern China. Solid Earth 2017, 8, 499–513. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Tang, C.; Zhang, D.L. Simulated Runoff Processes on Colluvial Deposits of Liantanggang Benggang and Their Water Distributions. Trans. Chin. Soc. Agric. Eng. 2015, 31, 179–185. [Google Scholar]
- JI, X.; Huang, Y.H.; Lin, J.S.; Jiang, F.S.; Yu, M.M.; Li, S.X. Estimation of erosion amount in collapsed gully based on CA-Markov model and ANUDEM interpolation. Trans. Chin. Soc. Agric. Eng. 2018, 34, 128–136. [Google Scholar]
- Dong, X.; Ding, S.W.; Li, L.; Deng, Y.S.; Wang, Q.X.; Wang, S.L.; Cai, C.F. Effects of Collapsing Gully Erosion on Soil Qualities of Farm Fields in the Hilly Granitic Region of South China. J. Integr. Agric. 2016, 15, 2873–2885. [Google Scholar] [CrossRef]
- Zhong, B.L.; Peng, S.Y.; Zhang, Q.; Ma, H.; Cao, S.X. Using an Ecological Economics Approach to Support the Restoration of Collapsing Gullies in Southern China. Land Use Policy 2013, 32, 119–124. [Google Scholar] [CrossRef]
- Deng, Y.S.; Duan, X.Q.; Ding, S.W.; Cai, C.F.; Chen, J.Z. Suction Stress Characteristics in Granite Red Soils and Their Relationship with the Collapsing Gully in South China. Catena 2018, 171, 505–522. [Google Scholar] [CrossRef]
- Long, L.; Ding, S.W.; Cai, C.F.; Xia, D.; Liao, X.W. Damage of collapse erosion to farmland in granite red soil hilly area and its control. Soil Water Conserv. China 2013, 12, 24–26. [Google Scholar]
- Zhang, D.L.; Liu, X.L. Evolution and Phases Division of Collapsed Gully Erosion Landform. J. Subtrop. Resour. Environ. 2011, 6, 23–28. [Google Scholar]
- Liu, H.; Qian, F.; Ding, W.; Gómez, J.A. Using 3D Scanner to Study Gully Evolution and Its Hydrological Analysis in the Deep Weathering of Southern China. Catena 2019, 183, 104218. [Google Scholar] [CrossRef]
- Deng, Y.S.; Cai, C.F.; Xia, D.; Ding, S.W.; Chen, J.Z. Fractal Features of Soil Particle Size Distribution under Different Land-Use Patterns in the Alluvial Fans of Collapsing Gullies in the Hilly Granitic Region of Southern China. PLoS ONE 2017, 12, e0173555. [Google Scholar] [CrossRef]
- Jiang, F.S.; Huang, Y.H.; Lin, J.S.; Lin, X.; Zhao, G.; Zhang, Y.; Xie, X.F.; Fu, H. The Dynamic Characteristics of Soil Detachment of Slumping Deposit by Surface Runoff in Benggang. J. Soil Water Conserv. 2013, 27, 86–89. [Google Scholar]
- Tao, Y.; Zou, Z.Q.; Guo, L.; He, Y.B.; Lin, L.R.; Lin, H.; Chen, J.Z. Linking Soil Macropores, Subsurface Flow and Its Hydrodynamic Characteristics to the Development of Benggang Erosion. J. Hydrol. 2020, 586, 124829. [Google Scholar] [CrossRef]
- De Bacellar, L.A.; Netto, A.C.; Lacerda, W.A. Controlling Factors of Gullying in the Maracujá Catchment, Southeastern Brazil. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2005, 30, 1369–1385. [Google Scholar] [CrossRef]
- De Menezes Rodrigues, K.; Correia, M.E.F.; de Resende, A.S.; de Lima Camilo, F.; Campelo, E.F.C.; Franco, A.A.; Dechen, S.C.F. Soil Fauna along the Process of Ecological Succession in Gullies Revegetated in the Municipality of Pinheiral–RJ/Fauna Do Solo Ao Longo Do Processo de Sucessao Ecologica Em Vocoroca Revegetada No Municipio de Pinheiral–RJ. Cienc. Florest. 2016, 26, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Bosino, A.; Omran, A.; Maerker, M. Identification, Characterisation and Analysis of the Oltrepo Pavese Calanchi in the Northern Apennines (Italy). Geomorphology 2019, 340, 53–66. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion Processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy Based on Multitemporal High-Resolution Terrestrial LiDAR and UAV Surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Cox, R.; Bierman, P.; Jungers, M.C.; Rakotondrazafy, A.M. Erosion Rates and Sediment Sources in Madagascar Inferred from 10Be Analysis of Lavaka, Slope, and River Sediment. J. Geol. 2009, 117, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Voarintsoa, N.R.G.; Cox, R.; Razanatseheno, M.O.M.; Rakotondrazafy, A.F.M. Relation between Bedrock Geology, Topography and Lavaka Distribution in Madagascar. S. Afr. J. Geol. 2012, 115, 225–250. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Cantón, Y.; Jetten, V. Biological Soil Crust Effects Must Be Included to Accurately Model Infiltration and Erosion in Drylands: An Example from Tabernas Badlands. Geomorphology 2015, 241, 331–342. [Google Scholar] [CrossRef]
- Casalı, J.; López, J.J.; Giráldez, J.V. Ephemeral Gully Erosion in Southern Navarra (Spain). Catena 1999, 36, 65–84. [Google Scholar] [CrossRef]
- Ji, X.; Thompson, A.; Lin, J.S.; Jiang, F.S.; Li, S.X.; Yu, M.M.; Huang, Y.H. Simulating and Assessing the Evolution of Collapsing Gullies Based on Cellular Automata-Markov and Landscape Pattern Metrics: A Case Study in Southern China. J. Soils Sediments 2019, 19, 3044–3055. [Google Scholar] [CrossRef]
- Tao, Y.; He, Y.; Duan, X.; Zou, Z.; Lin, L.; Chen, J. Preferential Flows and Soil Moistures on a Benggang Slope: Deter-mined by the Water and Temperature Co-Monitoring. J. Hydrol. 2017, 553, 678–690. [Google Scholar] [CrossRef]
- Duan, X.Q.; Ni, C.; Chen, J.; Chen, J.Z. Study on the Preferential Flow of Red Soil Erosion in Granite slope collapse with High Frequency Monitoring of Water Content. J. Soil Water Conserv. 2016, 30, 82–88. [Google Scholar]
- Shen, S.; Zhang, T.; Zhao, Y.; Wang, Z.; Qian, F. Automatic Benggang Recognition Based on Latent Semantic Fusion of Uhr Dom and Dsm Features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 331–338. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhong, L.T.; Huang, Y.H.; Ge, H.L.; Zhu, Y.; Jiang, F.S.; Li, X.F.; Zhang, Y.; Lin, J.S. Monitoring technology for collapse erosion based on the nap of the object photograph of UAV. Trans. Chin. Soc. Agric. Eng. 2021, 37, 151–159. [Google Scholar]
- Wang, Y.H.; Xie, X.D.; Wang, C.Y. Formation Mechanism of Calamities Due to Benggang Processes of Weathered Granitic Rocks. J. Mt. Sci. 2000, 18, 496–501. [Google Scholar]
- Lin, J.L.; Huang, Y.H. Review of Study on Formation Mechanism of Slope Disintegration Erosion and Its Problems. Res. Soil Water Conserv. 2010, 17, 41–44. [Google Scholar]
- Jiang, F.S.; Huang, Y.H.; Lin, J.S.; Zhao, G.; Ge, H.L.; Lin, J.L. Effects of Slope Gradient and Rainfall Intensity on Particle Size Composition of Erosion Sediment from Colluvial Deposits of Benggang. Acta Pedol. Sin. 2014, 51, 974–982. [Google Scholar]
- Zhang, Y.Y. Eroding Soil types and Their Management Counter measures of Granite Regions in Guangdong Province, China. J. Mt. Sci. 2009, 27, 49–53. [Google Scholar]
- Zhang, Y.; Zhao, D.F.; Lin, J.S.; Jiang, L.; Huang, B.F.; Jiang, F.S.; Wang, M.K.; Ge, H.L.; Huang, Y.H. Impacts of Collapsing Gullies on the Dynamics of Soil Organic Carbon in the Red Soil Hilly Region of Southeast China. Catena 2020, 190, 104547. [Google Scholar] [CrossRef]
- Chen, X.A.; Yang, J.; Xiao, S.S.; Song, Y.J.; Zheng, H.J.; Shen, L. Distribution Characteristics and Causes of Collapse Erosion. J. Mt. Scinece 2013, 31, 716–722. [Google Scholar] [CrossRef]
- Liao, Y.S.; Yuan, Z.J.; Zheng, M.; Li, D.Q.; Nie, X.D.; Wu, X.L.; Huang, B.; Xie, Z.Y.; Tang, C.Y. The Spatial Distribution of Benggang and the Factors That Influence It. Land Degrad. Dev. 2019, 30, 2323–2335. [Google Scholar] [CrossRef]
- Li, S.X.; Gui, H.Z.; Ding, S.W. Features of Special layout of Hill Collapse in South China. J. Huazhong Agric. Univ. 2013, 32, 83–86. [Google Scholar]
- Li, C.M.; Xu, G.L.; Lu, Y. Key Influencing Factors and Susceptibility of Collaspe Gully in Southeast Guangxi, China. J. Yangtze River Sci. Res. Inst. 2020, 37, 131–136. [Google Scholar]
- Liao, K.T.; Liu, Y.; Liu, Q.; Song, Y.J.; Huang, H.S. Distribution Characteristics and Driving Factors of Benggang Erosion in Ganzhou City. Res. Soil Water Conserv. 2021, 28, 126–130. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, Y.; Lin, J.; Jiang, F.; Chen, J. Sensitivity Assessment Method of Collapsed Gully Occurrence in Granite Region of South China Based on Niche-Fitness. J. China Agric. Univ. 2017, 22, 159–168. [Google Scholar]
- Qiu, J.A.; Liu, X.L. Status and Comprehensive Analysis of Benggang Research in China Based on Knowledge Maps. Sci. Soil Water Conserv. 2017, 15, 139–148. [Google Scholar]
- Korchenko, O.; Pohrebennyk, V.; Kreta, D.; Klymenko, V.; Anpilova, Y. GIS and Remote Sensing as Important Tools for Assessment of Environmental Pollution. Int. Multidiscip. Sci. GeoConference SGEM 2019, 19, 297–304. [Google Scholar]
- Xu, F.L.; Tao, S.; Dawson, R.W.; Li, B.G. A GIS-Based Method of Lake Eutrophication Assessment. Ecol. Model. 2001, 144, 231–244. [Google Scholar] [CrossRef]
- Luo, W.; Liu, C.C. Innovative Landslide Susceptibility Mapping Supported by Geomorphon and Geographical Detector Methods. Landslides 2018, 15, 465–474. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, M.; Liang, Y.; Qin, G.; Li, J.; Liu, Y. Land Use/Land Cover Change and Their Driving Factors in the Yellow River Basin of Shandong Province Based on Google Earth Engine from 2000 to 2020. ISPRS Int. J. Geo-Inf. 2022, 11, 163. [Google Scholar] [CrossRef]
- Shi, P.J.; Zhao, Z.; Chen, Y.; Sun, H.H. Study on Environmental Impact Assessment in Land Use Planning of Ganzhou Borough Based on DPSIR Model. Adv. Mater. Res. 2012, 518–523, 1210–1220. [Google Scholar] [CrossRef]
- Cao, F.X.; Qi, C.J.; Li, G.R.; Zhong, C.Y.; Tang, D.S.; Xu, Y.F.; Peng, C.H. Climate Change Effects on Southern Subtropical and Tropical Tree Species in Ganzhou City, China. Br. J. Environ. Clim. Change 2012, 2, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. ACTA Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wei, Y.J.; Wu, X.L.; Wang, J.G.; Yu, H.L.; Xia, J.W.; Deng, Y.S.; Zhang, Y.; Xiang, Y.; Cai, C.F.; Guo, Z.L. Identification of Geo-Environmental Factors on Benggang Susceptibility and Its Spatial Modelling Using Comparative Data-Driven Methods. Soil Tillage Res. 2021, 208, 104857. [Google Scholar] [CrossRef]
- Yin, S.Q.; Nearing, M.A.; Borrelli, P.; Xue, X.C. Rainfall Erosivity: An Overview of Methodologies and Applications. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, W.W.; Liu, Y.X.; Pereira, P. Global Rainfall Erosivity Changes between 1980 and 2017 Based on an Erosivity Model Using Daily Precipitation Data. Catena 2020, 194, 104768. [Google Scholar] [CrossRef]
- Wang, X.X.; Jia, K.; Liang, S.L.; Li, Q.Z.; Wei, X.Q.; Yao, Y.J.; Zhang, X.T.; Tu, Y.X. Estimating Fractional Vegetation Cover from Landsat-7 ETM+ Reflectance Data Based on a Coupled Radiative Transfer and Crop Growth Model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5539–5546. [Google Scholar] [CrossRef]
- Xiao, Q.; Tao, J.P.; Xiao, Y.; Qian, F. Monitoring Vegetation Cover in Chongqing between 2001 and 2010 Using Remote Sensing Data. Environ. Monit. Assess. 2017, 189, 493. [Google Scholar] [CrossRef]
- Yang, L.Q.; Jia, K.; Liang, S.L.; Wei, X.Q.; Yao, Y.J.; Zhang, X.T. A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data. Remote Sens. 2017, 9, 857. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Huang, Y.H.; Lin, J.S.; Jiang, F.S.; Ge, H.L.; Chen, P.J.; Li, X.G.; Zhan, Z.Z.; Zheng, Q.F. Effect of Discharge and Slope Gradient on Colluvial Deposits Erosion in Benggang. Res. Soil Water Conserv. 2014, 2, 11–16. [Google Scholar]
- Chen, X.A.; Yang, J.; Xiong, Y.; Xiao, S.S. Research on the Soil Characteristics and Factors of Collapsing Erosion in the Red Soil Zone. J. Hydraul. Eng. 2013, 44, 1175–1181. [Google Scholar]
- Liao, Y.S.; Tang, C.Y.; Yuan, Z.J.; Zhuo, M.N.; Huang, B.; Nie, X.D.; Xie, Z.Y.; Li, D.Q. Research Progress on Benggang Erosion and Its Prevention Measure in Red Soil Region of Southern China. ACTA Pedol. Sin. 2018, 55, 1297–1312. [Google Scholar]
- Song, Y.J.; Liao, K.T.; Yang, J.; Zuo, J.C.; Xiao, L. Temporal and spatial variation of vegetation cover and its water and soil conservation driving in Tangbei River watershed. J. Water Resour. Water Eng. 2017, 28, 24–31. [Google Scholar]
- Bennett, S.J.; Wells, R.R. Gully Erosion Processes, Disciplinary Fragmentation, and Technological Innovation. Earth Surf. Process. Landf. 2019, 44, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.F.; He, M.C.; Wang, Y.T.; Tao, Z.G.; Li, C. Eco-Geological Environment Quality Assessment Based on Multi-Source Data of the Mining City in Red Soil Hilly Region, China. J. Mt. Sci. 2022, 19, 253–275. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Wang, X.D.; Zhang, S.Y.; He, B.; Zhao, X.L.; Kong, F.L.; Feng, D.; Zeng, Y.C. Response of Soil Water Dynamics to Rainfall on A Collapsing Gully Slope: Based on Continuous Multi-Depth Measurements. Water 2020, 12, 2272. [Google Scholar] [CrossRef]
- Zhan, Q.; Wang, S.; Li, W.; Guo, F.; Yan, J. Analysis of Failure Models and Deformation Evolution Process of Geological Hazards in Ganzhou City, China. Front. Earth Sci. 2021, 9, 731447. [Google Scholar] [CrossRef]
Description | Interaction |
---|---|
q (X1 ∩ X2) < Min (q (X1), q (X2)) | Weaken, nonlinear |
Min (q (X1), q (X2)) < q (X1 ∩ X2) < Max (q (X1), q (X2)) | Weaken, single factor nonlinear |
q (X1 ∩ X2) > Max (q (X1), q (X2)) | Enhanced, double factors |
q (X1 ∩ X2) = q (X1) + q (X2) | Independent |
q (X1 ∩ X2) > q (X1) + q (X2) | Enhanced, nonlinear |
District | Number | Area (km2) | Population Density (Person/km2) | Benggang Density (Unit/km2) | District | Number | Area (km2) | Population Density (Person/km2) | Benggang Density (Unit/km2) |
---|---|---|---|---|---|---|---|---|---|
Anyuan | 1252 | 4.70 | 169.57 | 0.53 | Quannan | 742 | 0.82 | 129.00 | 0.48 |
Chongyi | 396 | 0.59 | 98.27 | 0.18 | Ruijing | 948 | 1.54 | 287.49 | 0.39 |
Dayu | 540 | 0.50 | 135.69 | 0.40 | Shangyou | 1897 | 1.23 | 210.19 | 1.23 |
Dingnan | 787 | 3.73 | 168.15 | 0.60 | Shicheng | 2468 | 9.61 | 210.75 | 1.57 |
Ganxian | 4136 | 38.61 | 218.01 | 1.38 | Xinfeng | 1839 | 10.69 | 267.78 | 0.64 |
Huichang | 1386 | 3.13 | 194.37 | 0.51 | Xingguo | 2933 | 12.62 | 263.36 | 0.91 |
Longnan | 4354 | 9.83 | 204.09 | 2.64 | Xunwu | 2162 | 6.28 | 142.99 | 0.92 |
Nankang | 2162 | 5.32 | 489.24 | 1.17 | Yudu | 4026 | 17.77 | 383.46 | 1.39 |
Ningdu | 853 | 1.43 | 209.63 | 0.21 | Zhanggong | 42 | 0.17 | 1939.02 | 0.09 |
Impact Factor | Elevation | Slope Type | Slope | Aspect | Lithology | Soil Type | Distance to River | Rainfall Erosivity | Vegetation Coverage | Land Use Type |
---|---|---|---|---|---|---|---|---|---|---|
q value | 0.0111 | 0.0000 | 0.0031 | 0.0003 | 0.0014 | 0.0003 | 0.0005 | 0.0113 | 0.0009 | 0.0035 |
Impact Factor | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 |
---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.0111 | |||||||||
X2 | 0.0113 | 0.0000 | ||||||||
X3 | 0.0170 | 0.0031 * | 0.0031 | |||||||
X4 | 0.0143 | 0.0004 | 0.0039 | 0.0003 | ||||||
X5 | 0.0330 | 0.0040 | 0.0147 | 0.0074 | 0.0035 | |||||
X6 | 0.0159 | 0.0015 | 0.0059 | 0.0028 | 0.0076 | 0.0014 | ||||
X7 | 0.0131 | 0.0004 * | 0.0041 | 0.0011 | 0.0048 | 0.0017 * | 0.0003 | |||
X8 | 0.0226 | 0.0011 | 0.0053 | 0.0081 | 0.0096 | 0.0031 | 0.0073 | 0.0005 | ||
X9 | 0.0455 | 0.0114 | 0.0185 | 0.0121 | 0.0214 | 0.0145 | 0.0123 | 0.0126 | 0.0113 | |
X10 | 0.0132 | 0.0011 | 0.0048 | 0.0033 | 0.0099 | 0.0030 | 0.0015 | 0.0061 | 0.0144 | 0.0009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, K.; Song, Y.; Xie, S.; Luo, Y.; Liu, Q.; Lin, H. Quantitative Analysis of the Factors Influencing the Spatial Distribution of Benggang Landforms Based on a Geographical Detector. ISPRS Int. J. Geo-Inf. 2022, 11, 337. https://doi.org/10.3390/ijgi11060337
Liao K, Song Y, Xie S, Luo Y, Liu Q, Lin H. Quantitative Analysis of the Factors Influencing the Spatial Distribution of Benggang Landforms Based on a Geographical Detector. ISPRS International Journal of Geo-Information. 2022; 11(6):337. https://doi.org/10.3390/ijgi11060337
Chicago/Turabian StyleLiao, Kaitao, Yuejun Song, Songhua Xie, Yichen Luo, Quan Liu, and Hui Lin. 2022. "Quantitative Analysis of the Factors Influencing the Spatial Distribution of Benggang Landforms Based on a Geographical Detector" ISPRS International Journal of Geo-Information 11, no. 6: 337. https://doi.org/10.3390/ijgi11060337
APA StyleLiao, K., Song, Y., Xie, S., Luo, Y., Liu, Q., & Lin, H. (2022). Quantitative Analysis of the Factors Influencing the Spatial Distribution of Benggang Landforms Based on a Geographical Detector. ISPRS International Journal of Geo-Information, 11(6), 337. https://doi.org/10.3390/ijgi11060337