Grid-Scale Regional Risk Assessment of Potentially Toxic Metals Using Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Pollution Sources Data
2.2.2. Pathways Data
2.2.3. Receptors Data
2.3. Methodology
2.3.1. Potentially Hazardous Area Simulation
- 1.
- Simulating the elliptical area impacted by wind. The location of a given industrial plant constitutes the vertex of the ellipse, and the direction of its major axis is consistent with that of the prevailing wind. The lengths of the major and minor axes are shown in Table 2. Each monthly wind condition generates an ellipse (Figure 3a);
- 2.
- 3.
- Merging the circle buffer with all the ellipses (Figure 3c);
- 4.
- Defining the smoothed enveloping surface extracted from the merged feature as the final PHA (Figure 3d).
2.3.2. Regional Risk Assessment of Potentially Toxic Metals (PTMs)
3. Results
3.1. Spatial Distribution of the Industrial Plants
3.2. Risk Assessment Results
3.2.1. Risk Assessment at the 1-km Scale
3.2.2. Risk Assessment at the County Scale
3.3. Verification
4. Discussion
4.1. Contributions
4.2. Management Suggestions
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.; Khan, M.; Jolly, Y.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Weidenhamer, J.; Fitzpatrick, M.; Biro, A.; Kobunski, P.; Hudson, M.; Corbin, R.; Gottesfeld, P. Metal exposures from aluminum cookware: An unrecognized public health risk in developing countries. Sci. Total Environ. 2017, 579, 805–813. [Google Scholar] [PubMed]
- Li, F.; Zhang, J.; Yang, J.; Liu, C.; Zeng, G. Site-specific risk assessment and integrated management decision-making: A case study of a typical heavy metal contaminated site, Middle China. Hum. Ecol. Risk Assess. 2016, 22, 1224–1241. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Jiang, W.; Liu, C.; Zhang, Z.; Zhang, C.; Zeng, G. Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ. Geochem. Health 2017, 39, 923–934. [Google Scholar]
- Shao, D.; Zhan, Y.; Zhou, W.; Zhu, L. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ. Pollut. 2016, 219, 329–336. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Szatmári, G.; Pásztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 2016, 565, 1054–1062. [Google Scholar]
- Desaules, A. Critical evaluation of soil contamination assessment methods for trace metals. Sci. Total Environ. 2012, 426, 120–131. [Google Scholar] [CrossRef]
- Li, R.; Yuan, Y.; Li, C.; Sun, W.; Yang, M.; Wang, X. Environmental health and ecological risk assessment of soil heavy metal pollution in the coastal cities of Estuarine Bay—A case study of Hangzhou Bay, China. Toxics 2020, 8, 75. [Google Scholar]
- Kielenniva, N.; Antikainen, R.; Sorvari, J. Measuring eco-efficiency of contaminated soil management at the regional level. J. Environ. Manag. 2012, 109, 179–188. [Google Scholar] [CrossRef]
- Pizzol, L.; Critto, A.; Agostini, P.; Marcomini, A. Regional risk assessment for contaminated sites part 2: Ranking of potentially contaminated sites. Environ. Int. 2011, 37, 1307–1320. [Google Scholar]
- Li, D.; Zhang, C.; Pizzol, L.; Critto, A.; Zhang, H.; Lv, S.; Marcomini, A. Regional risk assessment approaches to land planning for industrial polluted areas in China: The Hulunbeier region case study. Environ. Int. 2014, 65, 16–32. [Google Scholar] [CrossRef]
- Henny, C.; Meutia, A. Urban lakes in megacity Jakarta: Risk and management plan for future sustainability. Procedia Environ. Sci. 2014, 20, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Minolfi, G.; Albanese, S.; Lima, A.; Tarvainen, T.; Fortelli, A.; De, V. A regional approach to the environmental risk assessment-Human health risk assessment case study in the Campania region. J. Geochem. Explor. 2018, 184, 400–416. [Google Scholar] [CrossRef]
- Petrik, A.; Thiombane, M.; Albanese, S.; Lima, A.; De, V. Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through a compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma 2018, 331, 87–99. [Google Scholar] [CrossRef]
- Zuzolo, D.; Cicchella, D.; Lima, A.; Guagliardi, I.; Cerino, P.; Pizzolante, A.; Thiombane, M.; De, V.; Albanese, S. Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data. J. Geochem. Explor. 2020, 213, 106524. [Google Scholar] [CrossRef]
- Agostini, P.; Pizzol, L.; Critto, A.; D’Alessandro, M.; Zabeo, A.; Marcomini, A. Regional risk assessment for contaminated sites part 3: Spatial decision support system. Environ. Int. 2012, 48, 121–132. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
- Sun, M.; Wang, T.; Xu, X.; Zhang, L.; Li, J.; Shi, Y. Ecological risk assessment of soil cadmium in China’s coastal economic development zone: A meta-analysis. Ecosyst. Health Sustain. 2020, 6, 1733921. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Zhang, X.; Zha, T.; Guo, X.; Meng, G.; Zhou, J. Spatial distribution of metal pollution of soils of Chinese provincial capital cities. Sci. Total Environ. 2018, 643, 1502–1513. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Teng, Y.; Ni, S.; Wang, J.; Zuo, R.; Yang, J. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China. J. Geochem. Explor. 2010, 104, 118–127. [Google Scholar] [CrossRef]
- Werner, T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Saedpanah, S.; Amanollahi, J. Environmental pollution and geo-ecological risk assessment of the Qhorveh mining area in western Iran. Environ. Pollut. 2019, 253, 811–820. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; Cai, J.; Chen, B. Dynamic assessments of population exposure to urban greenspace using multi-source big data. Sci. Total Environ. 2018, 634, 1315–1325. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Hu, J.; Cao, J. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Climatol. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- Lu, L.; Cheng, H.; Liu, X.; Xie, J.; Li, Q.; Zhou, T. Assessment of regional human health risks from lead contamination in Yunnan province, southwestern China. PLoS ONE 2015, 10, e0119562. [Google Scholar] [CrossRef]
- Pu, W.; Sun, J.; Zhang, F.; Wen, X.; Liu, W.; Huang, C. Effects of copper mining on heavy metal contamination in a rice agrosystem in the Xiaojiang River Basin, southwest China. Acta Geochim. 2019, 38, 753–773. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Jiang, Y.; Chang, R.; Yao, S.; Jin, P.; Wang, W.; He, J.; Zhou, Q.; Prorok, P.; Qiao, Y.; et al. Prior lung disease and lung cancer risk in an occupational-based cohort in Yunnan, China. Lung Cancer 2011, 72, 258–263. [Google Scholar] [CrossRef] [PubMed]
- GNEDC. Guidelines for the Evaluation of Enterprise Environmental Risk Index; GNEDC: Guangzhou, China, 2018. [Google Scholar]
- Xiao, C.; Feng, Z.; Li, P.; You, Z.; Teng, J. Evaluating the suitability of different terrains for sustaining human settlements according to the local elevation range in China using the ASTER GDEM. J. Mt. Sci. 2018, 15, 2741–2751. [Google Scholar] [CrossRef]
- MEE. Notice on the Issuance of a Series of Technical Guidelines for Site Survey of Key Enterprises. Available online: http://www.mee.gov.cn/gkml/hbb/bgt/201708/t20170818_420021.htm (accessed on 14 August 2018).
- MEE. Technical Guidelines for Risk Assessment of Soil Contamination of Land for Construction (HJ 25.3-2019). Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201912/t20191224_749893.shtml (accessed on 5 December 2019).
- Lu, D.; Weng, Q.; Li, G. Residential population estimation using a remote sensing derived impervious surface approach. Int. J. Remote Sens. 2006, 27, 3553–3570. [Google Scholar] [CrossRef]
- Lobell, D.; Hicke, J.; Asner, G.; Field, C.; Tucker, C.; Los, S. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98. Glob. Change Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- He, B.; Zhao, X.; Li, P.; Liang, J.; Fan, Q.; Ma, X.; Zheng, G.; Qiu, J. Lead isotopic fingerprinting as a tracer to identify the pollution sources of heavy metals in the southeastern zone of Baiyin, China. Sci. Total Environ. 2019, 660, 348–357. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, D.; Wang, F.; Wang, H.; Huang, X.; Li, F.; Li, C.; Yu, H. Development of a new framework to estimate the environmental risk of heavy metal (loid) s focusing on the spatial heterogeneity of the industrial layout. Environ. Int. 2021, 147, 106315. [Google Scholar] [CrossRef]
- MEE. Technical Provisions for the Detailed Investigation of Soil Pollution in Agricultural land. Available online: https://www.sohu.com/a/403023950_100051699 (accessed on 21 May 2019).
- Punia, A. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: A review. Environ. Sci. Pollut. Res. 2020, 1–17. [Google Scholar] [CrossRef]
- Fry, K.; Gillings, M.; Isley, C.; Gunkel-Grillon, P.; Taylor, M. Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. Environ. Pollut. 2021, 288, 117593. [Google Scholar] [CrossRef]
- Colgan, A.; Hankard, P.; Spurgeon, D.; Svendsen, C.; Wadsworth, R.; Weeks, J. Closing the loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions. Environ. Toxicol. Chem. 2003, 22, 970–976. [Google Scholar] [CrossRef]
- Al-Khashman, O.; Shawabkeh, R. Metals distribution in soils around the cement factory in southern Jordan. Environ. Pollut. 2006, 140, 387–394. [Google Scholar] [CrossRef]
- Dragović, R.; Gajić, B.; Dragović, S.; Đorđević, M.; Đorđević, M.; Mihailović, N.; Onjia, A. Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia). J. Clean. Prod. 2014, 84, 550–562. [Google Scholar] [CrossRef]
- Filimonova, L.; Parshin, A.; Bychinskii, V. Air pollution assessment in the area of aluminum production by snow geochemical survey. Russ. Meteorol. Hydrol. 2015, 40, 691–698. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Chen, S.; Wu, F.; Sun, D.; Liao, H. Distribution of thorium in soils surrounding the rare-earth tailings reservoir in Baotou, China. J. Radioanal. Nucl. Chem. 2014, 299, 1453–1459. [Google Scholar] [CrossRef]
- Ooms, G.; Mahieu, A. A comparison between a plume path model and a virtual point source model for a stack plume. Appl. Sci. Res. 1981, 36, 339–356. [Google Scholar] [CrossRef]
- Fouda, Y. A GIS for environmental assessment of air pollution impacts on urban clusters and natural landscape at Rosetta City and region, Egypt. Urban Ecosyst. 2001, 5, 5–25. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Hui, Y.; Yong, L.; Shaoquan, L.; Yong, W.; Yong, Y.; Weidong, L. The influences of topographic relief on spatial distribution of mountain settlements in Three Gorges Area. Environ. Earth Sci. 2015, 74, 4335–4344. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, J.; Li, C. Spatial-temporal distribution characteristics of farmland ecosystem productivity of typical oasis in Zhangye City. Bull. Soil Water Conserv. 2017, 37, 120–125. [Google Scholar]
- Greenmine. 2016. Available online: http://www.greenmine.org.cn/upload/grab/20160929/81148233_31.png (accessed on 23 April 2019).
- Guo, Y. Analysis of spatio-temporal changes in life expectancy and its influencing factors in China. Chin. J. Health Policy 2018, 11, 44–49. [Google Scholar]
- Wei, M.; Su, Z.; Wang, J.; Gonzalez, M.; Yu, X.; Liang, H.; Zhou, Q.; Fan, Y.; Qiao, Y. Performance of lung cancer screening with low-dose CT in Gejiu, Yunnan: A population-based, screening cohort study. Thorac. Cancer 2020, 11, 1224–1232. [Google Scholar] [CrossRef]
- Qiao, Y.; Taylor, P.; Yao, S.; Erozan, Y.; Luo, X.; Barrett, M.; Yan, Q.; Giffen, C.; Huang, S.; Maher, M.; et al. Risk factors and early detection of lung cancer in a cohort of Chinese tin miners. Ann. Epidemiol. 1997, 7, 533–541. [Google Scholar] [CrossRef]
- Fan, Y.; Liang, H.; Qiao, Y. Lung cancer in urban China. Cancer Control 2015, 7, 88–93. [Google Scholar]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Yang, J.; Yang, F.; Yang, Y.; Xing, G.; Deng, C.; Shen, Y.; Luo, L.; Li, B.; Yuan, H. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut. 2016, 213, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Li, M.; Zhao, C.; Li, K.; Peng, M.; Qin, A.; Cheng, X. Overview of trace metals in the urban soil of 31 metropolises in China. J. Geochem. Explor. 2014, 139, 31–52. [Google Scholar] [CrossRef] [Green Version]
- MEE. Heavy Metal Pollution Prevention Deployment in Yunnan Province. Available online: http://www.mee.gov.cn/ywdt/hjnews/201105/t20110520_210913.shtml (accessed on 16 May 2019).
- Wang, H. Measures and effects of heavy metal pollution control in Luliang County. Environ. Sci. Surv. 2017, 36, 139–142. [Google Scholar]
- Environmental Protection and Remediation Plan of Honghe City. Available online: http://sthjt.yn.gov.cn/ywdt/xxywrdjj/201907/t20190730_191420.html (accessed on 26 April 2019).
- Tan, Z.; Lu, S.; Zhao, H.; Kai, X.; Jiaxian, P.; Win, M.; Yu, S.; Yonemochi, S.; Wang, Q. Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China. Environ. Geochem. Health 2018, 40, 1541–1555. [Google Scholar] [CrossRef]
- Bai, J.; Cui, B.; Wang, Q.; Gao, H.; Ding, Q. Assessment of heavy metal contamination of roadside soils in Southwest China. Stoch. Environ. Res. Risk Assess. 2009, 23, 341–347. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Li, Y.; Li, F.; Hu, B.; Cao, Y. Assessment of heavy metal pollution in soil and classification of pollution risk management and control zones in the industrial developed city. Environ. Manag. 2020, 66, 1105–1119. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; De, V.; Albanese, S.; Fortelli, A.; Scafetta, N.; Li, J.; Hope, D.; Cerino, P.; Pizzolante, A.; Qi, S.; et al. High spatial resolution measurements of passive-sampler derived air concentrations of persistent organic pollutants in the Campania region, Italy: Implications for source identification and risk analysis. Environ. Pollut. 2021, 286, 117248. [Google Scholar] [CrossRef] [PubMed]
- Marove, C.; Sotozono, R.; Tangviroon, P.; Tabelin, C.; Igarashi, T. Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province, Mozambique. Environ. Adv. 2022, 8, 100215. [Google Scholar] [CrossRef]
- Iordanidis, A.; Zoras, S.; Triantafyllou, A.; Buckman, J.; Asvesta, A.; Evagelopoulos, V. Characterisation of airborne particles collected proximal to lignite mines and power plants of Ptolemais-Kozani area, northern Greece. Fresenius Environ. Bull. 2008, 17, 378–398. [Google Scholar]
- Gasper, D.; Shah, A.; Tankha, S. The framing of sustainable consumption and production in SDG 12. Glob. Policy 2019, 10, 83–95. [Google Scholar] [CrossRef]
- Asi, Y.; Williams, C. The role of digital health in making progress toward Sustainable Development Goal (SDG) 3 in conflict-affected populations. Int. J. Med. Inform. 2018, 114, 114–120. [Google Scholar] [CrossRef]
- Tsakmakis, I.; Kokkos, N.; Pisinaras, V.; Papaevangelou, V.; Hatzigiannakis, E.; Arampatzis, G.; Gikas, G.; Linker, R.; Zoras, S.; Evagelopoulos, V.; et al. Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models. Water Resour. Manag. 2017, 31, 563–580. [Google Scholar] [CrossRef]
- Zoras, S.; Triantafyllou, A.; Hurley, P. Grid sensitivity analysis for the calibration of a prognostic meteorological model in complex terrain by a screening experiment. Environ. Model. Softw. 2007, 22, 33–39. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Chen, Z.; Li, F.; Yu, H. A causation-based method developed for an integrated risk assessment of heavy metals in soil. Sci. Total Environ. 2018, 642, 1396–1405. [Google Scholar] [CrossRef]
- Deng, W.; Li, X.; An, Z.; Yang, L. The occurrence and sources of heavy metal contamination in peri-urban and smelting contaminated sites in Baoji, China. Environ. Monit. Assess. 2016, 188, 251. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef]
- Islam, M.; Das, B.; Huque, M. Risk assessment for bangladeshis due to arsenic exposure from consumption of vegetables grown with natural arsenic contaminated groundwater. Indian J. Sci. Technol. 2018, 11, 5645. [Google Scholar] [CrossRef]
Data | Resolution | Time Span | Data Collection or Generation | |
---|---|---|---|---|
Sources | Metal-related industrial plants that registered online | - | 1982–2020 | Collected from the internet platforms using an internet data mining technology |
Pathways | Soil texture | 1 km | - | Downloaded from the Harmonized World Soil Database |
Precipitation | 1 km | 2006–2020 Yearly data | Interpolated from station records using the cubic spline interpolation method, with elevation as an independent covariate in the ANUSPLIN software | |
Wind speed | 0.1° | 1990–2020 Monthly data | Generated by ERA5 weather forecasting models | |
Relief amplitude | 1 km | - | Calculated based on DEM images using the window analysis method and the focal statistics function in ArcGIS [35] | |
Receptors | NPP | 1 km | 2000–2020 Yearly data | Downloaded from MODIS remote sensing images |
Population densities of children and the elderly | 1 km | 2020 | Simulated by a spatialization technique |
Metal Mining Industry (Base Distance is 1.0 km) | |||
---|---|---|---|
Adjustment Factors | Adjusted Distance (km) | ||
Duration of operation (years) | <15 | 0.0 | |
≥15 | +0.5 | ||
Multi-year mean precipitation (mm) | <400 | +1.0 | |
400–800 | 0.0 | ||
>800 | −0.5 | ||
Dispersal distance by wind | |||
Monthly wind speed (m/s) | Minor axis | Major axis | |
<3 | 1.0 km | 1.5 km | |
3–5 | 1.5 km | 2.0 km | |
5–7 | 2.0 km | 2.5 km | |
>7 | 3.0 km | 3.5 km | |
Metal Smelting and Refining Industry (Base Distance is 1.5 km) | |||
Adjustment factors | Adjusted distance (km) | ||
Duration of operation (years) | <5 | 0.0 | |
5–15 | +1.0 | ||
> 15 | +2.0 | ||
Multi-year mean precipitation (mm) | <400 | +0.5 | |
400–800 | 0.0 | ||
>800 | −0.5 | ||
Dispersal distance by wind | |||
Monthly wind speed (m/s) | Minor axis | Major axis | |
<2 | 2.0 km | 3.0 km | |
2–4 | 1.5 km | 2.5 km | |
>4 | 1.0 km | 2.0 km |
Indicators | Classes | Scores | Classes | Scores | Classes | Scores | |
---|---|---|---|---|---|---|---|
Sources | Hazard (H) | ≥0.5 | 5 | [0.15,0.5) | 3 | <0.15 | 1 |
Pathways | Soil texture (ST) | Sand | 5 | Silt loam | 3 | Clay loam | 1 |
Precipitation (P) (mm/yr) | ≥1000 | 5 | [400,1000) | 3 | <400 | 1 | |
Wind speed (WS) (m/s) | <2 | 5 | [2,4) | 3 | ≥4 | 1 | |
Relief amplitude (RA) (m) | ≥1500 | 5 | [1000,1500) | 3 | <1000 | 1 | |
Receptors | Yield of cropland | High yields | 5 | Moderate yields | 3 | Low yields | 1 |
Sensitive population density (per/km2) | ≥3000 | 5 | [1000,3000) | 3 | <1000 | 1 |
Risk Types | Counties | Management Strategies |
---|---|---|
Comprehensive | Gejiu, Anning | (1) Strengthen supervision of potential polluting factories with probable pollutants, and shut down or remove factories with excessive pollution; (2) Adjust the industrial structure and reduce the proportion of industries involved in pollution; (3) Optimize the spatial layout and isolate the potential polluting factories from cropland-intensive and densely populated areas by distance or barriers. |
Cropland-vulnerable | Tengchong, Maguan | (1) Intensify the supervision of the discharge of existing potential polluting factories to cropland, and shut down or relocate them when necessary; (2) Optimize the spatial distribution of industries and keep the potential polluting factories away from cropland-intensive areas, especially those with high yields; (3) Cultivate low-accumulation crops or purchase food from low-risk regions. |
Population-vulnerable | Jianshui, Huize | (1) Strengthen the supervision of potential polluting factories, and shut down or relocate them when necessary; (2) Optimize the spatial distribution and keep the potential polluting factories away from densely populated areas. |
Ordinary | Xuanwei, Mengzi, Yanshan, Wenshan, Dongchuan, Yimen | (1) Strengthen the supervision of potential polluting factories and reorganize or shut down factories with excessive pollution; (2) Upgrade the market access threshold for factories and prohibit the expansion of high-risk pollution-associated factories. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Cai, H.; Wang, L.; Lei, M. Grid-Scale Regional Risk Assessment of Potentially Toxic Metals Using Multi-Source Data. ISPRS Int. J. Geo-Inf. 2022, 11, 427. https://doi.org/10.3390/ijgi11080427
Chen M, Cai H, Wang L, Lei M. Grid-Scale Regional Risk Assessment of Potentially Toxic Metals Using Multi-Source Data. ISPRS International Journal of Geo-Information. 2022; 11(8):427. https://doi.org/10.3390/ijgi11080427
Chicago/Turabian StyleChen, Mulin, Hongyan Cai, Li Wang, and Mei Lei. 2022. "Grid-Scale Regional Risk Assessment of Potentially Toxic Metals Using Multi-Source Data" ISPRS International Journal of Geo-Information 11, no. 8: 427. https://doi.org/10.3390/ijgi11080427
APA StyleChen, M., Cai, H., Wang, L., & Lei, M. (2022). Grid-Scale Regional Risk Assessment of Potentially Toxic Metals Using Multi-Source Data. ISPRS International Journal of Geo-Information, 11(8), 427. https://doi.org/10.3390/ijgi11080427