Location Planning of Emergency Medical Facilities Using the p-Dispersed-Median Modeling Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Location Modeling for Emergency Medical Facility Planning
2.2. Integrating Facility Dispersion Models with Other Location Problems
3. Methodology
3.1. The p-Dispersed-Median (p-DIME) Model
- Index
- Decision variables
- Parameter inputs
3.2. Auxiliary Pre-Informed Lower Bound (APRIL) Constraint
3.3. Defining a Service Coverage Standard of LEMIs
3.4. Data
4. Analysis and Implications
4.1. Assessment of Service Coverage by Planning Scenarios
4.2. Computational Efficiency of the p-DIME Models for Planning Scenarios
4.3. Trade-Off between Dispersion and Median of LEMIs
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shin, S.D.; Ong, M.E.H.; Tanaka, H.; Ma, M.H.-M.; Nishiuchi, T.; Alsakaf, O.; Karim, S.A.; Khunkhlai, N.; Lin, C.-H.; Song, K.J.; et al. Comparison of Emergency Medical Services System Across Pan-Asian Countries: A Web-based Survey. Prehospital Emerg. Care 2012, 16, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.L.; Song, H.S.; Chung, J.M. The Recent Development of Emergency Medicine in South Korea. Ann. Emerg. Med. 1998, 32, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Herbert, A.; Gilbert, R.; González-Izquierdo, A.; Pitman, A.; Li, L. 10-y Risks of Death and Emergency Re-admission in Adolescents Hospitalised with Violent, Drug- or Alcohol-Related, or Self-Inflicted Injury: A Population-Based Cohort Study. PLoS Med. 2015, 12, e1001931. [Google Scholar] [CrossRef] [PubMed]
- Chea, H.; Kim, H.; Shaw, S.; Chun, Y. Assessing trauma center accessibility for healthcare equity using anti-covering approach. Int. J. Environ. Res. Public Health 2022, 19, 1459. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. Spatial Distribution of the Emergency Medical Facilities and Spatial Disparity of the Demand-Supply Level for the Emergency Medical Service. J. Korean Assoc. Reg. Geogr. 2004, 10, 606–623. [Google Scholar]
- Cho, J.; You, M.; Yoon, Y. Characterizing the influence of transportation infrastructure on Emergency Medical Services (EMS) in urban area—A case study of Seoul, South Korea. PLoS ONE 2017, 12, e0183241. [Google Scholar] [CrossRef] [PubMed]
- Khubchandani, J.A.; Shen, C.; Ayturk, D.; Kiefe, C.I.; Santry, H.P. Disparities in access to emergency general surgery care in the United States. Surgery 2017, 163, 243–250. [Google Scholar] [CrossRef]
- Ge, E.; Su, M.; Zhao, R.; Huang, Z.; Shan, Y.; Wei, X. Geographical disparities in access to hospital care in Ontario, Canada: A spatial coverage modelling approach. BMJ Open 2021, 11, e041474. [Google Scholar] [CrossRef]
- Mao, L.; Nekorchuk, D. Measuring spatial accessibility to healthcare for populations with multiple transportation modes. Health Place 2013, 24, 115–122. [Google Scholar] [CrossRef]
- Im, J.; Park, J. Spatial Distribution of Underserved Emergency Medical Service Areas and Their Residents’ Atrributes—Focusing on Chungnam Province. J. Korea Plan. Assoc. 2016, 51, 63–75. [Google Scholar] [CrossRef]
- Yun, S.B.; Kim, S.; Ju, S.; Noh, J.; Kim, C.; Wong, M.S.; Heo, J. Analysis of accessibility to emergency rooms by dynamic population from mobile phone data: Geography of social inequity in South Korea. PLoS ONE 2020, 15, e0231079. [Google Scholar] [CrossRef] [PubMed]
- National Geographic Information Institute. 2020 National Territorial Monitoring Report; NGII, Suwon: Suwon-si, Republic of Korea, 2021.
- Ahmadi-Javid, A.; Seyedi, P.; Syam, S.S. A Survey of Healthcare Facility Location. Comput. Oper. Res. 2017, 79, 223–263. [Google Scholar] [CrossRef]
- Kuby, M.J. Programming Models for Facility Dispersion: The p-Dispersion and Maxisum Dispersion Problems. Geogr. Anal. 1987, 19, 315–329. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph. Oper. Res. 1964, 12, 450–459. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Zhu, X.; Wyatt, T. Covering models and optimization techniques for emergency response facility location and planning: A review. Math. Methods Oper. Res. 2011, 74, 281–310. [Google Scholar] [CrossRef]
- Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The Location of Emergency Service Facilities. Oper. Res. 1971, 19, 1363–1373. [Google Scholar] [CrossRef]
- Church, R.; ReVelle, C. The maximal covering location problem. Pap. Reg. Sci. Assoc. 1974, 32, 101–118. [Google Scholar] [CrossRef]
- Church, R.L.; Murray, A.T. Business Site Selection, Location Analysis and GIS; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Daskin, M.; Stern, E. A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment. Transp. Sci. 1981, 15, 137–152. [Google Scholar] [CrossRef]
- Eaton, D.; Daskin, M.; Simmons, D.; Bulloch, B.; Jansma, G. Determining Emergency Medical Service Vehicle Deployment in Austin, Texas. Interfaces 1985, 15, 96–108. [Google Scholar] [CrossRef]
- Jia, H.; Ordones, F.; Dessouky, M. A Modeling Framework for Facility Location of Medical Services for Large-Scale Emergencies. IIE Trans. 2007, 39, 41–55. [Google Scholar] [CrossRef]
- Ye, H.; Kim, H. Locating healthcare facilities using a network-based covering location problem. GeoJournal 2016, 81, 875–890. [Google Scholar] [CrossRef]
- Daskin, M.S. Network and Discrete Location: Models, Algorithms and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- ReVelle, C.S.; Swain, R.W. Central facilities location. Geogr. Anal. 1970, 2, 30–42. [Google Scholar] [CrossRef]
- Caccetta, L.; Dzator, M. Heuristic Methods for Locating Emergency Facilities. Proc. Modsim 2005, 2005, 1744–1750. [Google Scholar]
- Indriasari, V.; Mahmud, A.R.; Ahmad, N.; Shariff, A.R.M. Maximal Service Area Problem for Optimal Siting of Emergency Facilities. Int. J. Geogr. Inf. Sci. 2010, 24, 213–230. [Google Scholar] [CrossRef]
- Shier, D.R. A min-max theorem for p-center problems on a tree. Transp. Sci. 1977, 11, 243–252. [Google Scholar] [CrossRef]
- Erkut, E.; Neuman, S. Comparison of Four Models for Dispersing Facilities. Inf. Syst. Oper. Res. 1991, 29, 68–86. [Google Scholar] [CrossRef]
- Lei, T.L.; Church, R.L. A Unified Model for Dispersing Facilities. Geogr. Anal. 2013, 45, 401–418. [Google Scholar] [CrossRef]
- Curtin, K.M.; Church, R.L. A Family of Location Models for Multiple-Type Discrete Dispersion. Geogr. Anal. 2006, 38, 248–270. [Google Scholar] [CrossRef]
- Erkut, E.; Neuman, S. Analytical Models for Locating Undesirable Facilities. Eur. J. Oper. Res. 1989, 40, 277–291. [Google Scholar] [CrossRef]
- Curtin, K.M.; Church, R.L. Optimal Dispersion and Central Places. J. Geogr. Syst. 2007, 9, 167–187. [Google Scholar] [CrossRef]
- Erkut, E.; Neuman, S. A multiobjective model for locating undesirable facilities. Ann. Oper. Res. 1992, 40, 209–227. [Google Scholar] [CrossRef]
- Maliszewski, P.J.; Kuby, M.J.; Horner, M.W. A Comparison of Multi-objective Spatial Dispersion Models for Managing Critical Assets in Urban Areas. Comput. Environ. Urban Syst. 2012, 36, 331–341. [Google Scholar] [CrossRef]
- Erkut, E. The discrete p-dispersion problem. J. Oper. Res. 1990, 46, 48–60. [Google Scholar] [CrossRef]
- Kim, H.; O’Kelly, M.E. Reliable p-hub location problems in telecommunication networks. Geogr. Anal. 2009, 41, 283–306. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979. [Google Scholar]
- Akinc, U.; Khumawala, B.M. An Efficient Branch and Bound Algorithm for the Capacitated Warehouse Location Problem. Manag. Sci. 1977, 23, 585–594. [Google Scholar] [CrossRef]
- IBM Branch and Cut in CPLEX, ILOG CPLEX Optimization Studio 12.10.0 Documentation. 2019. Available online: https://www.ibm.com/docs/en/icos/12.10.0?topic=concepts-branch-cut-in-cplex (accessed on 1 July 2022).
- Kim, H.; Chun, Y.; Kim, K. Delimitation of Functional Regions Using a p-Regions Problem Approach. Int. Reg. Sci. Rev. 2015, 38, 235–263. [Google Scholar] [CrossRef]
- Guzelsoy, M.; Nemhauser, G.; Savelsbergh, M. Restrict-and-relax search for 0-1 mixed-integer programs. Eur. J. Comput. Optim. 2013, 1, 201–218. [Google Scholar] [CrossRef]
- Lerner, E.B.; Moscati, R.M. The Golden Hour: Scientific Fact or Medical “Urban Legend”? Acad. Emerg. Med. 2001, 8, 758–760. [Google Scholar] [CrossRef]
- Vanderschuren, M.; McKune, D. Emergency Care Facility Access in Rural Areas within the Golden Hour?: Western Cape Case Study. Int. J. Health Geogr. 2015, 14, 5. [Google Scholar] [CrossRef]
- Cohon, J.L. Multiobjective Programming and Planning; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Griffith, D.; Chun, Y.; Kim, H. Spatial autocorrelation informed approaches to solving location–allocation problems. Spat. Stat. 2022, 50, 100612. [Google Scholar] [CrossRef]
p | Maxisum Dispersion (A) | p-DIME (B) | Current Location of the LEMIs (C) | |||
---|---|---|---|---|---|---|
Covered Population | % | Covered Population | % | Covered Population * | % | |
2 | 196,780 | 3.9 | 196,780 | 3.9 | - | - |
10 | 1,861,864 | 36.8 | 2,138,988 | 42.2 | - | - |
20 | 4,942,982 | 97.6 | 4,967,938 | 98.1 | - | - |
30 | 4,980,951 | 98.3 | 4,999,462 | 98.7 | - | - |
31 | 4,980,951 | 98.3 | 5,007,155 | 98.9 | 4,846,069 | 95.7 |
40 | 4,986,485 | 98.5 | 5,011,482 | 98.9 | - | - |
p | Objective Value | p-DIME without APRIL (A) | p-DIME with APRIL (B) | Sol. Time Reduction * | ||||
---|---|---|---|---|---|---|---|---|
Time (s) (c) | Nodes | Iterations | Time (s) (d) | Nodes | Iterations | |||
2 | 173.6 | 0.2 | 0 | 0 | - | 0 | - | - |
3 | 368.1 | 0.7 | 0 | 1785 | 0.4 | 0 | 0 | 50.7 |
10 | 4213.7 | 114.7 | 0 | 25,583 | 14.2 | 0 | 25,932 | 87.6 |
20 | 15,411.7 | 82.9 | 0 | 18,868 | 9.2 | 0 | 18,057 | 88.9 |
30 | 31,978.6 | 69.0 | 0 | 17,697 | 11.0 | 0 | 18,484 | 84.1 |
31 | 34,360.8 | 67.7 | 0 | 22,218 | 9.4 | 0 | 22,031 | 86.2 |
40 | 55,478.5 | 48.4 | 0 | 21,181 | 10.4 | 0 | 20,045 | 78.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, C.; Chun, Y.; Kim, H. Location Planning of Emergency Medical Facilities Using the p-Dispersed-Median Modeling Approach. ISPRS Int. J. Geo-Inf. 2023, 12, 497. https://doi.org/10.3390/ijgi12120497
Oh C, Chun Y, Kim H. Location Planning of Emergency Medical Facilities Using the p-Dispersed-Median Modeling Approach. ISPRS International Journal of Geo-Information. 2023; 12(12):497. https://doi.org/10.3390/ijgi12120497
Chicago/Turabian StyleOh, Changwha, Yongwan Chun, and Hyun Kim. 2023. "Location Planning of Emergency Medical Facilities Using the p-Dispersed-Median Modeling Approach" ISPRS International Journal of Geo-Information 12, no. 12: 497. https://doi.org/10.3390/ijgi12120497
APA StyleOh, C., Chun, Y., & Kim, H. (2023). Location Planning of Emergency Medical Facilities Using the p-Dispersed-Median Modeling Approach. ISPRS International Journal of Geo-Information, 12(12), 497. https://doi.org/10.3390/ijgi12120497