A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Imagery and Creation of Image Products
Selection of Years of Analysis
2.3. Creation of the Broad-Scale, High-Resolution Yield Estimates
2.3.1. Step 1: Creating the Geographic Representation of Dryland Agricultural Fields across the YPA and the State-Wide Region
2.3.2. Step 2: Imagery
Step 2a: Crop Type Classification
Step 2b: Aggregation of Crop Classification Results to Fields
Step 2c: Accuracy Assessment of Crop Type Discrimination
Step 2d: Calculation of Normalised Difference Vegetation Index (NDVI)
2.3.3. Step 3: Creation of Field Yield Maps
Step 3a: Field Yield Data Used for the YPA and State-Wide Analysis
Step 3b: Yield Data Post Processing
Step 3c. Creation of Field Yield Maps
Step 3d. Fine-Scale Yield Prediction and Validation
2.3.4. Step 4: Creation of Broad-Scale, High-Resolution Geo-Information on Wheat and Barley Yield for the YPA and State-Wide Analysis
Step 4a: Extrapolation of Yields across the YPA and State-Wide Study Areas
Step 4b. Broad-Scale Annual Yield Prediction and Validation Using Agricultural Yield Statistics from Government Administrative Regions
Step 4c.: Coarse-Level Yield Prediction and Validation
3. Results
3.1. YPA and State-Wide Crop Type Classification Accuracy
3.2. Yield–NDVI Relationships and Prediction Accuracy for YPA and State-Wide Analyses
3.2.1. Evaluation of the Yield–NDVI Models for Wheat and Barley for the YPA
3.2.2. Evaluation of the Generalisability of the Models over Time
3.2.3. Evaluation of the State-Wide Yield–NDVI Models for Wheat and Barley
3.2.4. Evaluation of the Generalisability of the State-Wide Yield–NDVI Models
3.3. The Creation of Geo-Information Representing Broad-Scale, High-Resolution Yield Estimates for the State-Wide Study Area
3.3.1. The Annual Spatial Representations of Wheat and Barley Yields across the State-Wide Study Area
3.3.2. Evaluation of the Broad-Scale Annual Yield Predictions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Rainfall (March–October (mm)) | Wheat | Barley | Total |
---|---|---|---|---|
1999 | 274 | 5 | 7 | 12 |
2001 | 375 | 6 | 4 | 10 |
2003 | 257 | 27 | 12 | 39 |
2004 | 240 | 25 | 11 | 36 |
2005 | 278 | 39 | 30 | 69 |
2006 | 165 | 20 | 30 | 68 |
2007 | 246 | 22 | 20 | 42 |
2008 | 252 | 33 | 40 | 73 |
State-wide 2004 | 33 | 17 | 50 | |
State-wide 2005 | 55 | 46 | 103 | |
State-wide 2006 | 41 | 43 | 84 |
Annual Validation Sets Incorporating Pooled Wheat and Barley Yield Datasets | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1999 | 2001 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | Model Generalisability (Count) | ||||||||||
Model | Type | RMSE | E | RMSE | E | RMSE | E | RMSE | E | RMSE | E | RMSE | E | RMSE | E | RMSE | E | |
1999 | Wheat | 0.72 | −0.84 | 2.83 | −14.60 | 1.68 | −1.93 | 0.77 | −0.66 | 1.23 | −0.45 | 0.63 | 0.11 | 0.92 | −0.52 | 1.38 | −1.39 | 1 |
1999 | Barley | 0.69 | −0.69 | 1.90 | −6.06 | 0.99 | −0.03 | 0.67 | −0.24 | 0.92 | 0.19 | 1.15 | −1.96 | 0.78 | −0.09 | 0.86 | 0.08 | 2 |
1999 | Pooled | 0.53 | −0.02 | 2.86 | −14.95 | 1.81 | −2.40 | 0.73 | −0.48 | 1.22 | −0.44 | 0.67 | 0.00 | 1.03 | −0.91 | 1.43 | −1.54 | 0 |
2001 | Wheat | 2.25 | −17.04 | 0.84 | −0.39 | 2.00 | −3.19 | 2.46 | −15.81 | 2.31 | −4.15 | 3.08 | −20.30 | 2.68 | −11.89 | 2.21 | −4.87 | 0 |
2001 | Barley | 0.80 | −1.26 | 1.07 | −1.24 | 1.46 | −1.20 | 1.10 | −2.33 | 1.01 | −0.11 | 1.82 | −6.41 | 1.90 | −5.47 | 1.31 | −1.16 | 0 |
2001 | Pooled | 2.69 | −24.85 | 0.72 | −0.01 | 1.52 | −1.40 | 2.36 | −14.42 | 2.25 | −3.88 | 2.87 | −17.43 | 2.10 | −6.93 | 1.81 | −3.12 | 0 |
2003 | Wheat | 0.75 | −0.99 | 2.18 | −8.31 | 1.04 | −0.13 | 0.54 | 0.20 | 0.90 | 0.21 | 0.80 | −0.42 | 0.67 | 0.20 | 0.92 | −0.06 | 3 |
2003 | Barley | 0.81 | −1.34 | 1.42 | −2.92 | 0.91 | 0.13 | 0.93 | −1.40 | 0.99 | 0.06 | 1.52 | −4.22 | 1.21 | −1.62 | 0.95 | −0.12 | 2 |
2003 | Pooled | 0.65 | −0.50 | 1.86 | −5.77 | 0.91 | 0.14 | 0.55 | 0.16 | 0.82 | 0.36 | 1.04 | −1.44 | 0.86 | −0.32 | 0.83 | 0.14 | 4 |
2004 | Wheat | 0.75 | −1.00 | 2.32 | −9.53 | 1.15 | −0.37 | 0.57 | 0.10 | 0.96 | 0.11 | 0.73 | −0.20 | 0.64 | 0.28 | 0.99 | −0.24 | 3 |
2004 | Barley | 0.60 | −0.28 | 1.97 | −6.59 | 0.97 | 0.02 | 0.56 | 0.14 | 0.86 | 0.29 | 1.01 | −1.29 | 0.75 | −0.01 | 0.85 | 0.09 | 4 |
2004 | Pooled | 0.76 | −1.08 | 2.01 | −6.85 | 0.95 | 0.05 | 0.51 | 0.25 | 0.84 | 0.32 | 0.90 | −0.80 | 0.79 | −0.11 | 0.85 | 0.09 | 4 |
2005 | Wheat | 0.93 | −2.12 | 1.98 | −6.66 | 1.01 | −0.06 | 0.56 | 0.15 | 0.85 | 0.30 | 0.87 | −0.70 | 0.91 | −0.49 | 0.86 | 0.07 | 3 |
2005 | Barley | 0.74 | −0.95 | 1.33 | −2.48 | 1.02 | −0.08 | 0.90 | −1.26 | 0.95 | 0.14 | 1.54 | −4.34 | 1.38 | −2.42 | 1.01 | −0.21 | 1 |
2005 | Pooled | 0.70 | −0.75 | 1.69 | −4.60 | 0.94 | 0.07 | 0.58 | 0.06 | 0.79 | 0.40 | 1.14 | −1.94 | 1.07 | −1.05 | 0.85 | 0.10 | 4 |
2006 | Wheat | 1.03 | −2.80 | 2.83 | −14.66 | 1.55 | −1.51 | 0.90 | −1.25 | 1.29 | −0.61 | 0.63 | 0.11 | 0.81 | −0.18 | 1.37 | −1.34 | 1 |
2006 | Barley | 1.04 | −2.85 | 2.84 | −14.83 | 1.57 | −1.56 | 0.91 | −1.30 | 1.31 | −0.64 | 0.63 | 0.11 | 0.82 | −0.21 | 1.38 | −1.38 | 1 |
2006 | Pooled | 1.04 | −2.87 | 2.84 | −14.78 | 1.56 | −1.53 | 0.91 | −1.30 | 1.30 | −0.63 | 0.63 | 0.11 | 0.82 | −0.20 | 1.37 | −1.37 | 1 |
2007 | Wheat | 1.17 | −3.89 | 2.64 | −12.62 | 1.28 | −0.71 | 0.89 | −1.2 | 1.23 | −0.45 | 0.63 | 0.10 | 0.63 | 0.29 | 1.20 | −0.82 | 2 |
2007 | Barley | 1.13 | −3.54 | 2.53 | −11.53 | 1.20 | −0.51 | 0.82 | −0.86 | 1.16 | −0.29 | 0.64 | 0.09 | 0.61 | 0.33 | 1.12 | −0.58 | 2 |
2007 | Pooled | 1.16 | −3.84 | 2.60 | −12.16 | 1.25 | −0.61 | 0.87 | −1.09 | 1.20 | −0.39 | 0.64 | 0.10 | 0.62 | 0.31 | 1.17 | −0.71 | 2 |
2008 | Wheat | 1.29 | −4.90 | 2.20 | −8.49 | 1.26 | −0.65 | 0.82 | −0.86 | 1.07 | −0.09 | 0.76 | −0.28 | 0.99 | −0.77 | 0.98 | −0.20 | 0 |
2008 | Barley | 0.81 | −1.32 | 1.70 | −4.65 | 0.92 | 0.13 | 0.80 | −0.79 | 0.96 | 0.11 | 1.33 | −2.95 | 0.91 | −0.48 | 0.86 | 0.08 | 3 |
2008 | Pooled | 0.92 | −2.02 | 1.98 | −6.63 | 1.00 | −0.05 | 0.55 | 0.16 | 0.85 | 0.31 | 0.87 | −0.71 | 0.91 | −0.47 | 0.86 | 0.08 | 3 |
Global | Wheat | 0.80 | −1.28 | 2.13 | −7.84 | 1.00 | −0.04 | 0.54 | 0.19 | 0.88 | 0.24 | 0.81 | −0.48 | 0.71 | 0.11 | 0.89 | 0.003 | 4 |
Global * | Wheat | 0.84 | −1.53 | 2.36 | −9.87 | 1.15 | −0.37 | 0.61 | −0.04 | 1.00 | 0.05 | 0.70 | −0.09 | 0.63 | 0.30 | 1.01 | −0.29 | 2 |
Global | Barley | 0.63 | −0.43 | 1.78 | −5.17 | 0.90 | 0.16 | 0.65 | −0.16 | 0.86 | 0.29 | 1.18 | −2.10 | 0.88 | −0.40 | 0.83 | 0.13 | 3 |
Global | Pooled | 0.64 | −0.47 | 1.97 | −6.57 | 0.95 | 0.07 | 0.53 | 0.23 | 0.84 | 0.33 | 0.97 | −1.11 | 0.77 | −0.06 | 0.85 | 0.10 | 4 |
Global * | Pooled | 0.66 | −0.55 | 2.09 | −7.50 | 1.00 | −0.05 | 0.52 | 0.26 | 0.87 | 0.28 | 0.88 | −0.75 | 0.70 | 0.12 | 0.88 | 0.03 | 4 |
References
- Erb, K.H.; Haberl, H.; Plutzar, C. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 2012, 47, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.; Tubiello, F.N.; Pinto, A.D.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, P.B.; Aggarwal, P.K. Trade-Offs between Agricultural Production, GHG Emissions and Income in a Changing Climate, Technology, and Food Demand Scenario. Sustainability 2021, 13, 3190. [Google Scholar] [CrossRef]
- Hoffmann, H.; Zhao, G.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; et al. Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Clim. Res. 2015, 65, 53–69. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H.; et al. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Chang. 2018, 48, 119–135. [Google Scholar] [CrossRef]
- Cao, M.; Zhu, Y.H.; Quan, J.L.; Zhou, S.; Lue, G.; Chen, M.; Huang, M.X. Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata. Earths Future 2019, 7, 1102–1116. [Google Scholar] [CrossRef]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; et al. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob. Chang. Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef]
- Alexander, P.; Rabin, S.; Anthoni, P.; Henry, R.; Pugh, T.A.M.; Rounsevell, M.D.A.; Arneth, A. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Chang. Biol. 2018, 24, 2791–2809. [Google Scholar] [CrossRef]
- Byers, E.; Gidden, M.; Leclere, D.; Balkovic, J.; Burek, P.; Ebi, K.; Greve, P.; Grey, D.; Havlik, P.; Hillers, A.; et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 2018, 13, 055012. [Google Scholar] [CrossRef]
- Audsley, E.; Trnka, M.; Sabate, S.; Maspons, J.; Sanchez, A.; Sandars, D.; Balek, J.; Pearn, K. Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation. Clim. Chang. 2015, 128, 215–227. [Google Scholar] [CrossRef]
- Holman, I.P.; Brown, C.; Janes, V.; Sandars, D. Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis. Agric. Syst. 2017, 151, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Grundy, M.J.; Bryan, B.A.; Nolan, M.; Battaglia, M.; Hatfield-Dodds, S.; Connor, J.D.; Keating, B.A. Scenarios for Australian agricultural production and land use to 2050. Agric. Syst. 2016, 142, 70–83. [Google Scholar] [CrossRef]
- Bryan, B.A.; Nolan, M.; McKellar, L.; Connor, J.D.; Newth, D.; Harwood, T.; King, D.; Navarro, J.; Cai, Y.; Gao, L.; et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Glob. Environ. Chang. 2016, 38, 130–152. [Google Scholar] [CrossRef]
- Ahmad, Q.; Biemans, H.; Moors, E.; Shaheen, N.; Masih, I. The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia. Water 2021, 13, 50. [Google Scholar] [CrossRef]
- Lungarska, A.; Chakir, R. Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation. Ecol. Econ. 2018, 147, 134–154. [Google Scholar] [CrossRef]
- Gaal, M.; Quiroga, S.; Fernandez-Haddad, Z. Potential impacts of climate change on agricultural land use suitability of the Hungarian counties. Reg. Environ. Chang. 2014, 14, 597–610. [Google Scholar] [CrossRef]
- Shirsath, P.B.; Aggarwal, P.K.; Thornton, P.K.; Dunnett, A. Prioritizing climate-smart agricultural land use options at a regional scale. Agric. Syst. 2017, 151, 174–183. [Google Scholar] [CrossRef]
- Nadeem, F.; Jacobs, B.; Cordell, D. Mapping agricultural vulnerability to impacts of climate events of Punjab, Pakistan. Reg. Environ. Chang. 2022, 22, 66. [Google Scholar] [CrossRef]
- Jeong, J.S. Design of spatial PGIS-MCDA-based land assessment planning for identifying sustainable land-use adaptation priorities for climate change impacts. Agric. Syst. 2018, 167, 61–71. [Google Scholar] [CrossRef]
- Cantelaube, P.; Jayet, P.A.; Carre, F.; Bamps, C.; Zakharov, P. Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level. Land Use Policy 2012, 29, 35–44. [Google Scholar] [CrossRef]
- Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W. Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level. Agric. Syst. 2015, 141, 160–173. [Google Scholar] [CrossRef]
- Schonhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E. Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria. Agric. Syst. 2016, 145, 39–50. [Google Scholar] [CrossRef]
- Angulo, C.; Roetter, R.; Trnka, M.; Pirttioja, N.; Gaiser, T.; Hlavinka, P.; Ewert, F. Characteristic ‘fingerprints’ of crop model responses data at different spatial resolutions to weather input. Eur. J. Agron. 2013, 49, 104–114. [Google Scholar] [CrossRef]
- Folberth, C.; Yang, H.; Wang, X.; Abbaspour, K.C. Impact of input data resolution and extent of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA. Ecol. Model. 2012, 235–236, 8–18. [Google Scholar] [CrossRef]
- Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; et al. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE 2016, 11, e0151782. [Google Scholar] [CrossRef]
- Coucheney, E.; Eckersten, H.; Hoffmann, H.; Jansson, P.E.; Gaiser, T.; Ewert, F.; Lewan, E. Key functional soil types explain data aggregation effects on simulated yield, soil carbon, drainage and nitrogen leaching at a regional scale. Geoderma 2018, 318, 167–181. [Google Scholar] [CrossRef]
- Maharjan, G.R.; Hoffmann, H.; Webber, H.; Srivastava, A.K.; Weihermuller, L.; Villa, A.; Coucheney, E.; Lewan, E.; Trombi, G.; Moriondo, M.; et al. Effects of input data aggregation on simulated crop yields in temperate and Mediterranean climates. Eur. J. Agron. 2019, 103, 32–46. [Google Scholar] [CrossRef]
- Zhang, X.; Sahajpal, R.; Manowitz, D.H.; Zhao, K.; LeDuc, S.D.; Xu, M.; Xiong, W.; Zhang, A.; Izaurralde, R.C.; Thomson, A.M.; et al. Multi-scale geospatial agroecosystem modeling: A case study on the influence of soil data resolution on carbon budget estimates. Sci. Total Environ. 2014, 479–480, 138–150. [Google Scholar] [CrossRef]
- Zhao, G.; Hoffmann, H.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.L.; Constantin, J.; Raynal, H.; et al. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Clim. Res. 2015, 65, 141–157. [Google Scholar] [CrossRef]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Donohue, R.J.; Lawes, R.A.; Mata, G.; Gobbett, D.; Ouzman, J. Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crops Res. 2018, 227, 79–90. [Google Scholar] [CrossRef]
- Saeed, U.; Dempewolf, J.; Becker-Reshef, I.; Khan, A.; Ahmad, A.; Wajid, S.A. Forecasting wheat yield from weather data and MODIS NDVI using Random Forests for Punjab province, Pakistan. Int. J. Remote Sens. 2017, 38, 4831–4854. [Google Scholar] [CrossRef]
- Cai, Y.P.; Guan, K.Y.; Lobell, D.; Potgieter, A.B.; Wang, S.W.; Peng, J.; Xu, T.F.; Asseng, S.; Zhang, Y.G.; You, L.Z.; et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Kamir, E.; Waldner, F.; Hochman, Z. Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; Lobell, D.B. Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches. Agric. For. Meteorol. 2017, 247, 207–220. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Lord, E.; Sparkes, D.L.; Scott, R.K.; Wiltshire, J.J.J.; Orson, J. An analysis of the potential of precision farming in Northern Europe. Soil Use Manag. 1999, 15, 1–8. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Blackmore, B.S. The Role of Yield Maps in Precision Farming. Ph.D. Thesis, National Soil Resources Institute, Cranfield University, Bedford, UK, 2009. [Google Scholar]
- Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten years of corn yield dynamics at field scale under digital agriculture solutions: A case study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [Google Scholar] [CrossRef]
- Guastaferro, F.; Castrignano, A.; De Benedetto, D.; Sollitto, D.; Troccoli, A.; Cafarelli, B. A comparison of different algorithms for the delineation of management zones. Precis. Agric. 2010, 11, 600–620. [Google Scholar] [CrossRef]
- Lyle, G.; Bryan, B.A.; Ostendorf, B. Identifying the spatial and temporal variability of economic opportunity costs to promote the adoption of alternative land uses in grain growing agricultural areas: An Australian example. J. Environ. Manag. 2015, 155, 123–135. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the Record Straight on Precision Agriculture Adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Lyle, G.; Ostendorf, B. A high resolution broad scale spatial indicator of grain growing profitability for natural resource planning. Ecol. Indic. 2011, 11, 209–218. [Google Scholar] [CrossRef]
- Lyle, G.; Lewis, M.; Ostendorf, B. Testing the Temporal Ability of Landsat Imagery and Precision Agriculture Technology to Provide High Resolution Historical Estimates of Wheat Yield at the Farm Scale. Remote Sens. 2013, 5, 1549–1567. [Google Scholar] [CrossRef]
- Lai, Y.R.; Pringle, M.J.; Kopittke, P.M.; Menzies, N.W.; Orton, T.G.; Dang, Y.P. An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 99–108. [Google Scholar] [CrossRef]
- Evans, F.H.; Shen, J.X. Long-Term Hindcasts of Wheat Yield in Fields Using Remotely Sensed Phenology, Climate Data and Machine Learning. Remote Sens. 2021, 13, 2435. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Dado, W.T.; Deines, J.M.; Patel, R.; Liang, S.Z.; Lobell, D.B. High-Resolution Soybean Yield Mapping Across the US Midwest Using Subfield Harvester Data. Remote Sens. 2020, 12, 3471. [Google Scholar] [CrossRef]
- Deines, J.M.; Patel, R.; Liang, S.Z.; Dado, W.; Lobell, D.B. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn. Remote Sens. Environ. 2021, 253, 112174. [Google Scholar] [CrossRef]
- Department of Primary Industries and Regions South Australia (PIRSA). Crop and Pasture Reports. Government of South Australia. 2009. Available online: https://www.pir.sa.gov.au/primary_industry/grains/crop_and_pasture_reports (accessed on 16 December 2022).
- Bureau of Meteorology (BOM). Regional Weather and Climate Guides. Australian Government. 2022. Available online: http://www.bom.gov.au/climate/climate-guides/ (accessed on 16 December 2022).
- United Sates Geological Survey (USGS). Landsat Missions. 2022. Available online: https://www.usgs.gov/landsat-missions (accessed on 16 December 2022).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Society of Precision Agriculture Australia (SPAA). 2022. Available online: https://spaa.com.au/ (accessed on 16 December 2022).
- Department of Agriculture Fisheries and Forestry (ABARES). National Scale Land Use Version 4. Australian Government. 2006. Available online: https://www.agriculture.gov.au/abares/aclump/land-use/data-download (accessed on 12 December 2022).
- Attorney-General’s Department South Australia. Land Use Generalised. Data SA South Australian Government Data Directory. Government of South Australia. 2006. Available online: https://data.sa.gov.au/data/dataset/land-use-generalised (accessed on 12 December 2022).
- Department of Climate Change Energy the Environment and Water (DCCEEW). National Vegetation Information System (NVIS). Australian Government. 2022. Available online: https://www.dcceew.gov.au/environment/land/native-vegetation/national-vegetation-information-system/data-products (accessed on 12 December 2022).
- Land Services SA. South Australian Cadastral Data. Government of South Australia. 2006. Available online: https://www.landservices.com.au/products-and-services/south-australian-cadastral-data (accessed on 12 December 2022).
- Lyle, G. “I Can’t Be Green If I’m in the Red”: Combining Precision Agriculture and Remote Sensing Technologies for Sub Field and Regional Decision Making. Ph.D. Thesis, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, Australia, 2010; p. 294. [Google Scholar]
- Lyle, G.; Bryan, B.A.; Ostendorf, B. Post-processing methods to eliminate erroneous grain yield measurements: Review and directions for future development. Precis. Agric. 2014, 15, 377–402. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Whelan, B.M. VESPER: Variogram Estimation and Spatial Prediction Plus ERror, version 1.62; Australian Centre for Precision Agriculture; The University of Sydney: Sydney, NSW, Australia, 2005.
- Taylor, J.A.; McBratney, A.B.; Whelan, B.M. Establishing management classes for broadacre agricultural production. Agron. J. 2007, 99, 1366–1376. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Hochman, Z.; Gobbett, D.; Holzworth, D.; McClelland, T.; van Rees, H.; Marinoni, O.; Garcia, J.N.; Horan, H. Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia. Field Crops Res. 2012, 136, 85–96. [Google Scholar] [CrossRef]
- Heupel, K.; Spengler, D.; Itzerott, S. A Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 53–69. [Google Scholar] [CrossRef]
- Kyere, I.; Astor, T.; Grass, R.; Wachendorf, M. Agricultural crop discrimination in a heterogeneous low-mountain range region based on multi-temporal and multi-sensor satellite data. Comput. Electron. Agric. 2020, 179, 105864. [Google Scholar] [CrossRef]
- Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; Del Pozo, S.; González-Aguilera, D.; Moreno, M.A. Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin. Agric. Syst. 2019, 171, 36–50. [Google Scholar] [CrossRef]
- Piedallu, C.; Pedersoli, E.; Chaste, E.; Morneau, F.; Seynave, I.; Claude, J. Optimal resolution of soil properties maps varies according to their geographical extent and location. Geoderma 2022, 412, 115723. [Google Scholar] [CrossRef]
- He, M.Z.; Kimball, J.S.; Maneta, M.P.; Maxwell, B.D.; Moreno, A.; Begueria, S.; Wu, X.C. Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data. Remote Sens. 2018, 10, 372. [Google Scholar] [CrossRef]
- Chen, Y.; McVicar, T.R.; Donohue, R.J.; Garg, N.; Waldner, F.; Ota, N.; Li, L.T.; Lawes, R. To Blend or Not to Blend? A Framework for Nationwide Landsat-MODIS Data Selection for Crop Yield Prediction. Remote Sens. 2020, 12, 1653. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens. Environ. 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Waldner, F.; Diakogiannis, F.I. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sens. Environ. 2020, 245, 111741. [Google Scholar] [CrossRef]
- Waldner, F.; Diakogiannis, F.I.; Batchelor, K.; Ciccotosto-Camp, M.; Cooper-Williams, E.; Herrmann, C.; Mata, G.; Toovey, A. Detect, Consolidate, Delineate: Scalable Mapping of Field Boundaries Using Satellite Images. Remote Sens. 2021, 13, 2197. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Zhao, Y.; Zarco-Tejada, P.J.; Chenu, K.; Zhang, Y.F.; Porker, K.; Biddulph, B.; Dang, Y.P.; Neale, T.; Roosta, F.; et al. Evolution and application of digital technologies to predict crop type and crop phenology in agriculture. Silico Plants 2021, 3, diab017. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Panjala, P.; Teluguntla, P.; Yamano, T.; Mohammed, I. Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security. Gisci. Remote Sens. 2022, 59, 1048–1077. [Google Scholar] [CrossRef]
- Luo, Y.C.; Zhang, Z.; Zhang, L.L.; Han, J.C.; Cao, J.; Zhang, J. Developing High-Resolution Crop Maps for Major Crops in the European Union Based on Transductive Transfer Learning and Limited Ground Data. Remote Sens. 2022, 14, 1809. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Bronnimann, S.; Cowan, T.; Friedman, A.R.; Hawkins, E.; Iles, C.; Muller, W.; Schurer, A.; Undorf, S. Causes of climate change over the historical record. Environ. Res. Lett. 2019, 14, 123006. [Google Scholar] [CrossRef]
- Ekwurzel, B.; Boneham, J.; Dalton, M.W.; Heede, R.; Mera, R.J.; Allen, M.R.; Frumhoff, P.C. The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Clim. Chang. 2017, 144, 579–590. [Google Scholar] [CrossRef]
- Jochinke, D.C.; Noonon, B.J.; Wachsmann, N.G.; Norton, R.M. The adoption of precision agriculture in an Australian broadacre cropping system—Challenges and opportunities. Field Crops Res. 2007, 104, 68–76. [Google Scholar] [CrossRef]
- Zhang, A.; Baker, I.; Jakku, E.; Llewellyn, R. Accelerating Precision Agriculture to Decision Agriculture: The Needs and Drivers for the Present and Future of Digital Agriculture in Australia. A Cross-Industry Producer Survey for the Rural R&D for Profit ‘Precision to Decision’ (P2D) Project; CSIRO: Canberra, Australia, 2017. [Google Scholar]
- Maestrini, B.; Basso, B. Subfield crop yields and temporal stability in thousands of US Midwest fields. Precis. Agric. 2021, 22, 1749–1767. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, L. Integrating Climate Change Adaptation and Mitigation into Land Use Optimization: A Case Study in Huailai County, China. Land 2021, 10, 1297. [Google Scholar] [CrossRef]
Day/Month/Year | Overall Accuracy (%) | Kappa Statistic (%) |
---|---|---|
6 October 1999 | 80 | 70 |
1 August 2001 | 90 | 84 |
12 September 2003 | 41 | 10 |
11 October 2004 | 50 | 17 |
20 September 2005 | 47 | 8 |
15 September 2006 | 59 | 33 |
2 September 2007 | 74 | 60 |
12 September 2008 | 60 | 37 |
State-wide 25 September–29 October 2004 | 38 | 4 |
State-wide 1 September–4 October 2005 | 43 | 16 |
State-wide 1 September–21 September 2006 | 36 | 5 |
Year | Crop | Training Set (n) | Empirical Relationship | R2 | Validation Set (n) | Root Mean Square Error (RMSE) (t/ha) | % RMSE of Average Yield | Nash–Sutcliffe Efficiency Criterion (E) |
---|---|---|---|---|---|---|---|---|
1999 | Wheat | 2137 | y = 2.33x0.43 | 0.13 | 916 | 0.42 | 29 | 0.12 |
1999 | Barley | 2137 | y = 3.39x0.33 | 0.35 | 916 | 0.30 | 14 | 0.39 |
1999 | Pooled | 4274 | y = 1.80x0.05 | 0.002 | 1828 | 0.53 | 30 | −0.02 |
2001 | Wheat | 2300 | y = 5.97x0.31 | 0.09 | 982 | 0.53 | 11 | 0.11 |
2001 | Barley | 2300 | y = 6.87x0.92 | 0.22 | 982 | 0.65 | 15 | 0.26 |
2001 | Pooled | 4600 | y = 4.46x0.008 | 0.00 | 1964 | 0.72 | 16 | −0.01 |
2003 | Wheat | 4000 | y = 4.25x0.87 | 0.43 | 4000 | 0.91 | 31 | 0.14 |
2003 | Barley | 4000 | y = 4.59x0.52 | 0.24 | 4000 | 0.77 | 21 | 0.18 |
2003 | Pooled | 8000 | y = 4.59x0.78 | 0.34 | 8000 | 0.91 | 27 | 0.14 |
2004 | Wheat | 800 | y = 3.82x0.80 | 0.23 | 800 | 0.48 | 26 | 0.18 |
2004 | Barley | 800 | y = 3.84x0.57 | 0.09 | 800 | 0.48 | 20 | 0.08 |
2004 | Pooled | 1600 | y = 4.92x0.98 | 0.29 | 1600 | 0.51 | 24 | 0.25 |
2005 | Wheat | 3900 | y = 6.22x1.33 | 0.56 | 3885 | 0.55 | 23 | 0.59 |
2005 | Barley | 3900 | y = 5.39x0.72 | 0.49 | 3885 | 0.59 | 19 | 0.47 |
2005 | Pooled | 7800 | y = 5.47x0.95 | 0.38 | 7770 | 0.79 | 32 | 0.40 |
2006 | Wheat | 5000 | y = 3.24x0.96 | 0.19 | 5000 | 0.54 | 32 | 0.14 |
2006 | Barley | 5000 | y = 3.21x0.96 | 0.12 | 5000 | 0.71 | 44 | 0.08 |
2006 | Pooled | 10,000 | y = 3.24x0.97 | 0.16 | 10,000 | 0.63 | 38 | 0.11 |
2007 | Wheat | 5000 | y = 4.81x1.42 | 0.56 | 5000 | 0.47 | 20 | 0.49 |
2007 | Barley | 5000 | y = 5.03x1.40 | 0.22 | 5000 | 0.73 | 28 | 0.16 |
2007 | Pooled | 10,000 | y = 4.99x1.44 | 0.39 | 10,000 | 0.62 | 25 | 0.31 |
2008 | Wheat | 3000 | y = 9.14x2.09 | 0.45 | 3000 | 0.80 | 30 | 0.27 |
2008 | Barley | 3000 | y = 3.66x0.33 | 0.003 | 3000 | 0.80 | 26 | 0.002 |
2008 | Pooled | 6000 | y = 6.11x1.30 | 0.22 | 6000 | 0.86 | 30 | 0.08 |
Global | Wheat | 6400 | y = 4.70x0.99 | 0.32 | 6400 | 1.10 | 46 | 0.19 |
Global | Barley | 6400 | y = 4.12x0.56 | 0.20 | 6400 | 0.95 | 32 | 0.26 |
Global | Pooled | 12,800 | y = 4.28x0.74 | 0.24 | 12,800 | 1.12 | 39 | 0.22 |
Global excluding 2001 wheat | Wheat | 5600 | y = 4.10x0.94 | 0.43 | 5600 | 0.67 | 32 | 0.41 |
Global excluding 2001 wheat | Pooled | 12,000 | y = 4.08x0.74 | 0.28 | 12,000 | 0.93 | 36 | 0.29 |
Year | Crop | Empirical Relationship | R2 | Root Mean Square Error (RMSE) (t/ha) | % RMSE of Average Yield | Nash–Sutcliffe Efficiency Criterion (E) |
---|---|---|---|---|---|---|
2004 | Wheat | y = 2.26x0.33 | 0.11 | 0.54 | 30 | 0.11 |
2004 | Barley | y = 4.00x0.74 | 0.48 | 0.67 | 28 | 0.33 |
2005 | Wheat | y = 4.58x1.78 | 0.49 | 0.73 | 30 | 0.27 |
2005 | Barley | y = 5.73x1.48 | 0.53 | 0.78 | 26 | 0.49 |
2006 | Wheat | y = 5.43x2.62 | 0.60 | 0.52 | 40 | 0.43 |
2006 | Barley | y = 3.55x1.55 | 0.15 | 0.64 | 50 | 0.08 |
2004 | Pooled | y = 3.01x0.55 | 0.25 | 0.69 | 33 | 0.20 |
2005 | Pooled | y = 5.49x1.80 | 0.45 | 0.76 | 26 | 0.40 |
2006 | Pooled | y = 4.21x1.97 | 0.36 | 0.85 | 66 | 0.22 |
2005 on 2004 | Wheat | as above | as above | 0.85 | 47 | −1.19 |
2005 on 2004 | Barley | as above | as above | 0.85 | 39 | −0.26 |
2005 on 2006 | Wheat | as above | as above | 0.60 | 46 | 0.26 |
2005 on 2006 | Barley | as above | as above | 1.18 | 92 | −2.19 |
2005 model on 2004 data | Pooled | as above | as above | 1.01 | 48 | −0.72 |
2005 model on 2006 data | Pooled | as above | as above | 0.72 | 56 | −0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyle, G.; Clarke, K.; Kilpatrick, A.; Summers, D.M.; Ostendorf, B. A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region. ISPRS Int. J. Geo-Inf. 2023, 12, 50. https://doi.org/10.3390/ijgi12020050
Lyle G, Clarke K, Kilpatrick A, Summers DM, Ostendorf B. A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region. ISPRS International Journal of Geo-Information. 2023; 12(2):50. https://doi.org/10.3390/ijgi12020050
Chicago/Turabian StyleLyle, Greg, Kenneth Clarke, Adam Kilpatrick, David McCulloch Summers, and Bertram Ostendorf. 2023. "A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region" ISPRS International Journal of Geo-Information 12, no. 2: 50. https://doi.org/10.3390/ijgi12020050
APA StyleLyle, G., Clarke, K., Kilpatrick, A., Summers, D. M., & Ostendorf, B. (2023). A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region. ISPRS International Journal of Geo-Information, 12(2), 50. https://doi.org/10.3390/ijgi12020050