Provenance in GIServices: A Semantic Web Approach
Abstract
:1. Introduction
2. Provenance for Geospatial Data Products in a Distributed Service Environment
2.1. An Example: Landslide Susceptibility Scenario
2.2. Requirements for Provenance
- Before I can trust it for my decisions, how was the landslide susceptibility index derived?
- What are the source data and their spatial and temporal ranges?
- Is there an error in the source data and geoprocessing services involved?
- Can I use a different computational model for the landslide susceptibility index?
2.2.1. The Different Levels of Provenance in Automatic GIService Composition
2.2.2. Capturing Provenance in the Semantic Execution Engine
2.2.3. Tracking Domain-Specific Metadata
3. Semantic Descriptions of GISservices
4. The Three-Level View of Provenance
4.1. Knowledge, Service, and Data Provenance
4.2. Mapping the Provenance Model to PROV-O for Interoperability
- geop:ProvenanceGeoDataType ⊑ prov:Entity
- geop:ParamValueBinding ⊑ prov:Entity
- geop:ServiceExecution ⊑ prov:Activity
- geop:hasInput ⊑ prov:used
- geop:hasOutput ⊑ prov:generated
- geop:hasGeoDataTypeParent ⊑ prov:wasDerivedFrom
- geop:hasGeoDataTypeAncestor ⊑ prov:wasDerivedFrom
- geop:producedBy ⊑ prov:wasGeneratedBy
5. Extending a Semantic Execution Engine to Capture Provenance
5.1. Provenance Capture in Executing a Semantic Service Chain
5.2. Tracking Domain-Specific Metadata
6. Implementation
7. Related Work and Discussion
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, V.; Queiroz, G.; Ferreira, K. An overview of platforms for big earth observation data management and analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Di, L.; McDonald, K. Next generation data and information systems for earth sciences research. In Proceedings of the First International Symposium on Digital Earth, Beijing, China, 29 November 1999; pp. 92–101. [Google Scholar]
- Yue, P.; Gong, J.; Di, L.; He, L.; Wei, Y. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure. GeoInformatica 2011, 15, 273–303. [Google Scholar] [CrossRef]
- McIlraith, S.A.; Son, T.C.; Zeng, H. Semantic web services. IEEE Intell. Syst. 2001, 16, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Sycara, K.; Paolucci, M.; Ankolekar, A.; Srinivasan, N. Automated discovery, interaction and composition of semantic web services. J. Web Semant. 2003, 1, 27–46. [Google Scholar] [CrossRef]
- Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial Web services chains. Comput. Geosci. 2007, 33, 649–665. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L.; Hao, H.; Wu, X.; Tong, D.Q.; Zhang, C.; Virgei, C.; Fang, H.; Yu, E.; Tan, X.; et al. CyberConnector: A service-oriented system for automatically tailoring multisource Earth observation data to feed Earth science models. Earth Sci. Inform. 2018, 11, 1–17. [Google Scholar] [CrossRef]
- Foster, I. Service-oriented science. Science 2005, 308, 814–817. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J. Geographic information science III: GIScience, fast and slow–Why faster geographic information is not always smarter. Prog. Hum. Geogr. 2020, 44, 129–138. [Google Scholar] [CrossRef]
- Wang, S.; Wilkins-Diehr, N.R.; Nyerges, T.L. CyberGIS—Toward synergistic advancement of cyberinfrastructure and GIScience: A workshop summary. Spat. Inf. Sci. 2012, 4, 125–148. [Google Scholar] [CrossRef]
- Yue, P.; Guo, X.; Zhang, M.; Jiang, L.; Zhai, X. Linked Data and SDI: The case on Web geoprocessing workflows. ISPRS J. Photogramm. Remote Sens. 2016, 114, 245–257. [Google Scholar] [CrossRef]
- Yue, P.; Gong, J.; Di, L. Augmenting geospatial data provenance through metadata tracking in geospatial service chaining. Comput. Geosci. 2010, 36, 270–281. [Google Scholar] [CrossRef]
- Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P.; Gong, J. Semantic web services based process planning for earth science applications. Int. J. Geogr. Inf. Sci. 2009, 23, 1139–1163. [Google Scholar] [CrossRef]
- Zhuang, C.; Xie, Z.; Ma, K.; Guo, M.; Wu, L. A task-oriented knowledge base for geospatial problem-solving. ISPRS Int. J. Geo-Inf. 2018, 7, 423. [Google Scholar] [CrossRef] [Green Version]
- Mehla, S.; Jain, S. Rule languages for the semantic web. In Emerging Technologies in Data Mining and Information Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 825–834. [Google Scholar]
- Rao, J.; Su, X. A survey of automated web service composition methods. In Proceedings of the First International Workshop on Semantic Web Services and Web Process Composition, San Diego, CA, USA, 6 July 2004; pp. 43–54. [Google Scholar]
- Norton, B.; Pedrinaci, C.; Domingue, J.; Zaremba, M. Semantic execution environments for semantics-enabled SOA. Inf. Technol. 2008, 50, 118–121. [Google Scholar]
- Zhang, M.; Bu, X.; Yue, P. GeoJModelBuilder: An open source geoprocessing workflow tool. Open Geospatial Data. Softw. Stand. 2017, 2, 8. [Google Scholar]
- Bowers, S.; Ludäscher, B. An ontology-driven framework for data transformation in scientific workflows. In Proceedings of the International Workshop on Data Integration in the Life Sciences, Leipzig, Germany, 25–26 March 2004; Springer: Berlin/Heidelberg, Germany; pp. 1–16. [Google Scholar]
- Veregin, H.; Lanter, D.P. Data-quality enhancement techniques in layer-based geographic information systems. Comput. Environ. Urban Syst. 1995, 19, 23–36. [Google Scholar] [CrossRef]
- Yue, P.; Gong, J.; Di, L.; He, L. Automatic geospatial metadata generation for Earth science virtual data products. GeoInformatica 2012, 16, 1–29. [Google Scholar] [CrossRef]
- Joseki. Hewlett-Packard Labs Semantic Web Programme. 2009. Available online: http://www.joseki.org/ (accessed on 6 December 2009).
- Zhao, P.; Di, L. (Eds.) Geospatial Web Services: Advances in Information Interoperability; Information Science Reference (IGI Global): Hershey, PA, USA, 2010; p. 552. [Google Scholar]
- Bröring, A.; Maue, P.; Janowicz, K.; Nüst, D.; Malewski, C. Semantically-enabled sensor plug & play for the sensor web. Sensors 2011, 11, 7568–7605. [Google Scholar]
- Athanasiou, S.; Georgomanolis, N.; Patroumpas, K.; Alexakis, M.; Stratiotis, T. TripleGeo-CSW: A Middleware for Exposing Geospatial Catalogue Services on the Semantic Web. In Proceedings of the EDBT/ICDT Workshops, Brussels, Belgium, 27 March 2015; pp. 229–236. [Google Scholar]
- Prudhomme, C.; Homburg, T.; Ponciano, J.J.; Boochs, F.; Cruz, C.; Roxin, A.M. Interpretation and automatic integration of geospatial data into the semantic web. Computing 2020, 102, 365–391. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, L.; Zhao, J.; Yue, P.; Zhang, X. Coupling OGC WPS and W3C PROV for provenance-aware geoprocessing workflows. Comput. Geosci. 2020, 138, 104419. [Google Scholar] [CrossRef]
- Chebotko, A.; Lu, S.; Fei, X.; Fotouhi, F. RDFProv: A relational RDF store for querying and managing scientific workflow provenance. Data Knowl. Eng. 2010, 69, 836–865. [Google Scholar] [CrossRef]
- Ornelas, T.; Braga, R.; David, J.M.N.; Campos, F.; Castro, G. Provenance data discovery through Semantic Web resources. Concurr. Comput. Pract. Exp. 2018, 30, e4366. [Google Scholar] [CrossRef]
- Brown, C. Semantic web technologies for data curation and provenance. In Proceedings of the 19th International Congress of Metrology, Paris, France, 24–26 September 2019. [Google Scholar]
- Sahoo, S.S.; Barga, R.; Sheth, A.P.; Thirunarayan, K.; Hitzler, P. PrOM: A Semantic Web Framework for Provenance Management in Science. Available online: http://corescholar.libraries.wright.edu/knoesis/445 (accessed on 5 May 2021).
- He, L.; Yue, P.; Di, L.; Zhang, M.; Hu, L. Adding geospatial data provenance into SDI—A service-oriented approach. IEEE Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 926–936. [Google Scholar] [CrossRef]
- Golbeck, J.; Hendler, J. A semantic web approach to the provenance challenge. Concurr. Comput. Pract. Exp. 2007, 20, 431–439. [Google Scholar] [CrossRef]
Geospatial Metadata | Tracking |
---|---|
identification | M |
constraints | O |
data quality | O |
maintenance | O |
spatial representation | C |
reference system | M |
content | O |
portrayal catalogue | O |
distribution | M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Li, H.; Yue, P. Provenance in GIServices: A Semantic Web Approach. ISPRS Int. J. Geo-Inf. 2023, 12, 118. https://doi.org/10.3390/ijgi12030118
Wu Z, Li H, Yue P. Provenance in GIServices: A Semantic Web Approach. ISPRS International Journal of Geo-Information. 2023; 12(3):118. https://doi.org/10.3390/ijgi12030118
Chicago/Turabian StyleWu, Zhaoyan, Hao Li, and Peng Yue. 2023. "Provenance in GIServices: A Semantic Web Approach" ISPRS International Journal of Geo-Information 12, no. 3: 118. https://doi.org/10.3390/ijgi12030118
APA StyleWu, Z., Li, H., & Yue, P. (2023). Provenance in GIServices: A Semantic Web Approach. ISPRS International Journal of Geo-Information, 12(3), 118. https://doi.org/10.3390/ijgi12030118