Analysing River Systems with Time Series Data Using Path Queries in Graph Databases
Abstract
:1. Introduction and Motivation
Contributions and Paper Organization
2. Related Work
3. Background and Preliminary Definitions
3.1. Transportation Networks
3.2. Temporal Graphs
1 SELECT paths 2 MATCH (s1:Sensor), (s2:Sensor), 3 paths = TNCP((s1)-[:flowsTo∗3..5]-> (s2), 4 ‘2022-03-10 05:00’, ‘2022-03-10 16:00’, 5 ‘Temperature’,’=’, ‘High’) 6 WHERE s1.id = 3;
1 SELECT paths, interval 2 MATCH (s1:Sensor), (s2:Sensor), 3 paths = TNPCP((s1) - [:flowsTo∗] -> (s2), 4 ’2022-03-10 05:00’, ’2022-03-10 16:00’, 5 ’Temperature’,’up’, ’Medium’) 6 WHERE s1.id = 3;
4. Temporal Graphs for Transportation Networks
5. Paths in Transportation Networks
5.1. Transportation Networks Continuous Path
- ;
- ; and
- T is an interval such that for all i there exists , and such that
- -
- ;
- -
- ;
- -
- ; and
- -
- .
- , [09:15–09:45]]
- , [10:00–11:15]]
- , [10:00–11:00]].
5.2. Transportation Networks Pairwise Continuous Path
- ;
- ; and
- T is a list of intervals such that there exists such that
- -
- ;
- -
- ;
- -
- and
- -
- is a list of intervals such that .
- , {[09:15–9:45][09:15–11:45][09:15–11:45] [12:15–12:30]}]
- , {[10:00–11:30][09:15–11:45][09:15–11:45] [12:15–12:30]}]
- , {[10:00–11:00][09:45–11:00],[09:15–11:45] [09:15–11:45][12:15–12:30]}]
5.3. Transportation Networks Consecutive Path
- S is a sequence of pairs where is the i-th sensor node in S, for such that there exists
- -
- such that
- -
- ;
- -
- ;
- -
- and T is a list of intervals .
- For every pair , , it holds that
- -
- .
5.4. Transportation Networks Flow Paths
- S is is a sequence of pairs
- is the i-th sensor node in S, for , and there exists
- -
- such that
- -
- ;
- -
- ;
- -
- and
- -
- .
- For every pair , it holds that
- -
- , {[09:15–11:45][10:00–11:30]}]
- , {[09:15–11:45][09:45–11:00][10:00–11:30]}].
5.5. Generalizing Temporal Paths
6. Path Computation and Query Generation
6.1. Computing the TN Temporal Paths
Algorithm 1 : Computes the Flow Paths |
Input: A graph G, a source node s, a destination node d (optional), a variable X, the maximum number of sensors in the path , a query interval , an operator , a starting value v, the direction and a period of time. Output: A set with the solutions.
|
Algorithm 2 : Obtains the interval of a sensor node according to an operator |
Input: A graph G, an attribute node a, a query interval , a previous interval I, an operator , a starting value v, a period . Output: An interval and its value .
|
6.2. Processing T-GQL Queries
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=fPath((p1) - [f:flowsTo∗3] -> (p2), 4 ’2022-03-09 09:30’,’2022-03-09 13:00’,’Temperature’, 5 ’up’,’Low’,’P1D’) 6 WHERE p1.Name = ’1’
1 MATCH (p1:Segment {title: ’Sensor’}), 2 (p2:Segment {title: ’Sensor’}) 3 WHERE p1.name = ’1’ 4 CALL consecutive.sensorFlowing(p1,p2,3,3, 5 {edgesLabel:’flowsTo’,delta:’P1D’, 6 attribute:’Temperature’,category:’Low’, 7 between:’2022-03-09 09:30 - 2022-03-09 13:00’, 8 operator:’up’,direction:’outgoing’}) 9 YIELD path as internal_p1, intervals as internal_i1 10 WITH {path: internal_p1, intervals: internal_i1} as p 11 RETURN p.path, p.intervals
7. A Real-World Use Case
7.1. Data Exploration
7.1.1. Global Analysis
7.1.2. Local Analysis
7.2. Model Construction and Categorization of Variables
7.2.1. Categorization of Variables Using Global Thresholds
7.2.2. Construction of the Graph Using Global Categorization
7.2.3. Categorization of Variables Using Local Thresholds
7.2.4. Construction of the Graph Using Local Categorization
7.3. Querying the Transportation Network Graph with T-GQL
7.4. Querying the Global Graph
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=FPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-09 16:00’,’2022-03-11 00:00’,’ec’,’up’,’0’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW19’
{ "path": { "name": "BWO_DWG_CTD_Ijzer_IOW19", "value": "0", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW18", "value": "1", "attribute": "ec"}, { "title": "Segment", "id": 506}, { "name": "IMC_910040", "value": "1", "attribute": "ec" } ], "intervals": [ "2022-03-09 16:15 - 2022-03-09 23:30", "2022-03-09 23:30 - 2022-03-10 02:45", "2022-03-10 14:15 - 2022-03-10 14:30" ] ] }
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=FPath((p1) <- [f:flowsTo∗2..6] - (p2), 4 ’2022-03-04 01:20’,’2022-03-09 00:00’,’ec’,’up’,’0’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW15’
{ "path": [ { "name": "BWO_DWG_CTD_Ijzer_IOW15", "value": "0", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW16", "value": "1", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW17", "value": "1", "attribute": "ec" }, { "name": "IMC_910040", "value": "2", "attribute": "ec" } ], "intervals": [ [ "2022-03-04 06:00 - 2022-03-04 09:45", "2022-03-06 09:45 - 2022-03-10 16:00", "2022-03-06 15:30 - 2022-03-06 17:00", "2022-03-08 09:00 - 2022-03-08 09:15" ] ] }
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=TNCPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-01 00:00’,’2022-03-09 23:59’,’ec’,’=’,’0’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW19’
[ { "path": [ { "name": "BWO_DWG_CTD_Ijzer_IOW19", "vhas": "6033639", "value": "0", "attribute": "ec" }, { "name": { "name": "BWO_DWG_CTD_Ijzer_IOW18", "vhas": "7058471", "value": "0", "attribute": "ec" } ], "intervals": [ [ "2022-03-01 00:00 - 2022-03-06 11:30", "2022-03-06 11:45 - 2022-03-06 12:15", "2022-03-06 12:30 - 2022-03-06 12:45", "2022-03-06 15:00 - 2022-03-07 14:30", "2022-03-07 15:00 - 2022-03-07 21:30", "2022-03-08 03:45 - 2022-03-08 07:15", "2022-03-08 07:30 - 2022-03-08 09:45", "2022-03-08 15:45 - 2022-03-08 22:30", "2022-03-09 02:00 - 2022-03-09 09:45", "2022-03-09 16:15 - 2022-03-09 23:30"] ] ] } ]
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=TNCPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-01 00:00’,’2022-03-16 23:00’,’ec’,’=’,’1’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW19’
[ "2022-03-10 14:15 - 2022-03-10 14:30", "2022-03-13 06:45 - 2022-03-13 12:45", "2022-03-13 13:00 - 2022-03-13 13:15", "2022-03-13 13:45 - 2022-03-13 23:30", "2022-03-13 23:45 - 2022-03-14 00:30", "2022-03-14 01:15 - 2022-03-14 06:00", "2022-03-14 17:45 - 2022-03-14 18:15", "2022-03-14 18:45 - 2022-03-14 19:30", "2022-03-15 03:45 - 2022-03-15 06:00" ]
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=TNCPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-01 00:00’,’2022-03-31 23:00’,’ec’,’=’,’2’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW19’
Querying the Local Graph
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=FPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-11 00:00’,’2022-03-13 00:00’,’ec’,’=’,’2’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW19’
{ "path": { "name": "BWO_DWG_CTD_Ijzer_IOW19", "value": "2", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW18", "value": "2", "attribute": "ec"}, { "title": "Segment", "id": 506}, { "name": "IMC_910040", "value": "2", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW17", "value": "2", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW16", "value": "2", "attribute": "ec"} ], "intervals": [ "2022-03-11 02:45 - 2022-03-11 22:30", "2022-03-11 07:30 - 2022-03-11 07:45", "2022-03-11 09:00 - 2022-03-11 09:15", "2022-03-11 14:15 - 2022-03-11 22:45", "2022-03-11 18:15 - 2022-03-12 06:15" ] ] }
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=FPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-11 10:00’,’2022-03-13 00:00’,’ec’,’=’,’2’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW18’
{ "path": { "name": "BWO_DWG_CTD_Ijzer_IOW18", "value": "2", "attribute": "ec"}, { "title": "Segment", "id": 506}, { "name": "IMC_910040", "value": "2", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW17", "value": "2", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW16", "value": "2", "attribute": "ec"} ], "intervals": [ "2022-03-11 10:45 - 2022-03-12 02:00", "2022-03-11 12:45 - 2022-03-11 23:15", "2022-03-11 14:15 - 2022-03-11 22:45", "2022-03-11 18:15 - 2022-03-12 06:15" ] ] }
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=FPath((p1) <- [f:flowsTo∗2..6] - (p2), 4 ’2022-03-08 00:00’, ’2022-03-13 00:00,’ec’,’up’,’1’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW15’
{ "path": { "name": "BWO_DWG_CTD_Ijzer_IOW15", "value": "1", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW16", "value": "2", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW17", "value": "2", "attribute": "ec"}, { "name": "IMC_910040", "value": "2", "attribute": "ec"}, { "title": "Segment", "id": 506}, { "name": "BWO_DWG_CTD_Ijzer_IOW16", "value": "2", "attribute": "ec"}, { "name": "BWO_DWG_CTD_Ijzer_IOW15", "value": "2", "attribute": "ec"} ], "intervals": [ "2022-03-08 13:00 - 2022-03-08 13:30", "2022-03-10 16:00 - 2022-03-10 16:15", "2022-03-10 18:15 - 2022-03-10 18:30", "2022-03-10 21:15 - 2022-03-10 21:45", "2022-03-11 07:30 - 2022-03-11 07:45", "2022-03-12 01:15 - 2022-03-12 01:30" ] ] }
1 SELECT p.path, p.intervals 2 MATCH (p1:Sensor), (p2:Sensor), 3 p=TNCPath((p1) - [f:flowsTo∗2..6] -> (p2), 4 ’2022-03-24 00:00’,’2022-03-25 00:00’,’ec’,’=’,’2’) 5 WHERE p1.Name = ’BWO_DWG_CTD_Ijzer_IOW19’
[ { "path": [ { "name": "BWO_DWG_CTD_Ijzer_IOW19", "vhas": "6033639", "value": "2", "attribute": "ec" "vhas": "6033639" }, { "name": { "name": "BWO_DWG_CTD_Ijzer_IOW18", "vhas": "7058471", "value": "2", "attribute": "ec" }, { "vhas": "7058475" }, { "name": "IMC_910040", "vhas": "6033616", "value": "2", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW17", "vhas": "6033616", "value": "2", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW16", "vhas": "6033616", "value": "2", "attribute": "ec" }, { "name": "BWO_DWG_CTD_Ijzer_IOW15", "vhas": "6033616", "value": "2", "attribute": "ec" } ], "intervals": [ [ "2022-03-24 16:15 - 2022-03-24 16:30", "2022-03-24 18:00 - 2022-03-24 19:30", "2022-03-24 19:45 - 2022-03-24 20:15", "2022-03-24 20:45 - 2022-03-24 21:00" ] ] } ]
7.5. Execution Times
8. Discussion and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag. 2002, 40, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Bollen, E.; Hendrix, R.; Kuijpers, B.; Vaisman, A.A. Time-Series-Based Queries on Stable Transportation Networks Equipped with Sensors. ISPRS Int. J. Geo Inf. 2021, 10, 531. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Y.; Hu, J.; Zhao, Y.; Li, S.; Hu, J. Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Sensors 2019, 19, 2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angles, R. The Property Graph Database Model. In Proceedings of the AMW CEUR Workshop Proceedings, Cali, Colombia, 21–25 May 2018; Volume 2100. Available online: CEUR-WS.org (accessed on 1 March 2019).
- Debrouvier, A.; Parodi, E.; Perazzo, M.; Soliani, V.; Vaisman, A.A. A model and query language for temporal graph databases. VLDB J. 2021, 30, 825–858. [Google Scholar] [CrossRef]
- Tansel, A.; Clifford, J.; Gadia, S. (Eds.) Temporal Databases: Theory, Design and Implementation; Benjamin/Cummings: San Francisco, CA, USA, 1993. [Google Scholar]
- Pagán, B.; Desmet, N.; Seuntjens, P.; Bollen, E.; Kuijpers, B. Data driven methods for real time flood, drought and water quality monitoring: Applications for Internet of Water. Eur. Geosci. Union Gen. Assem. 2020, EGU, 9291. [Google Scholar] [CrossRef]
- Havlik, D.; Schade, S.; Sabeur, Z.A.; Mazzetti, P.; Watson, K.; Berre, A.J.; Mon, J.L. From Sensor to Observation Web with Environmental Enablers in the Future Internet. Sensors 2011, 11, 3874–3907. [Google Scholar] [CrossRef] [Green Version]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3879–3914. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Bollen, E.; Hendrix, R.; Kuijpers, B.; Vaisman, A. Towards the Internet of Water: Using graph databases for hydrological analysis on the Flemish river system. Trans. GIS 2021, 25, 2907–2938. [Google Scholar] [CrossRef]
- Brouwers, J.; Peeters, B.; Van Steertegem, M.; Van Lipzig, N.; Wouters, H.; Beullens, J.; Demuzere, M.; Willems, P.; De Ridder, K.; Maiheu, B.; et al. MIRA Climate Report 2015; Technical Report; VMM: Aalst, Belgium, 2015. [Google Scholar]
- Gobin, A. Impact of heat and drought stress on arable crop production in Belgium. Nat. Hazards Earth Syst. Sci. 2012, 12, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.K.; Pedersen, T.B.; Thomsen, C. Time Series Management Systems: A Survey. IEEE Trans. Knowl. Data Eng. 2017, 29, 2581–2600. [Google Scholar] [CrossRef] [Green Version]
- Lerner, A.; Shasha, D. AQuery: Query language for ordered data, optimization techniques, and experiments. In Proceedings of the 29th International Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany, 9–12 September 2003; Selinger, P., Carey, M., Freytag, J., Abiteboul, S., Lockemann, P., Heuer, A., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2003; pp. 345–356. [Google Scholar] [CrossRef]
- Sadri, R.; Zaniolo, C.; Zarkesh, A.M.; Adibi, J. A Sequential Pattern Query Language for Supporting Instant Data Mining for e-Services. In Proceedings of the VLDB 2001, 27th International Conference on Very Large Data Bases, Roma, Italy, 11–14 September 2001; Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2001; pp. 653–656. [Google Scholar]
- Seshadri, P.; Livny, M.; Ramakrishnan, R. The Design and Implementation of a Sequence Database System. In Proceedings of the VLDB’96, 22th International Conference on Very Large Data Bases, Mumbai (Bombay), India, 3–6 September 1996; Morgan Kaufmann: Burlington, MA, USA, 1996; pp. 99–110. [Google Scholar]
- Seshadri, P. Management of Sequence Data. Ph.D. Thesis, University of Wisconsin-Madison, CS Department, Madison, WI, USA, 1996. [Google Scholar]
- Weiss, C.H. Categorical Time Series Analysis. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Weiss, C.H. Analyzing categorical time series in the presence of missing observations. Stat. Med. 2021, 40, 4675–4690. [Google Scholar] [CrossRef] [PubMed]
- Angles, R. A Comparison of Current Graph Database Models. In Proceedings of the ICDE Workshops, Arlington, VA, USA, 1–5 April 2012; pp. 171–177. [Google Scholar] [CrossRef]
- Robinson, I.; Webber, J.; Eifrem, E. Graph Databases; O’Reilly Media, Inc.: Newton, MA, USA, 2013. [Google Scholar]
- Angles, R.; Arenas, M.; Barceló, P.; Hogan, A.; Reutter, J.; Vrgoč, D. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv. 2017, 50, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Kuijpers, B.; Soliani, V.; Vaisman, A.A. Modeling and Querying Sensor Networks Using Temporal Graph Databases. In Proceedings of the New Trends in Database and Information Systems—ADBIS 2022 Short Papers, Doctoral Consortium and Workshops: DOING, K-GALS, MADEISD, MegaData, SWODCH, Turin, Italy, 5–8 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1652, pp. 222–231. [Google Scholar] [CrossRef]
- Kuijpers, B.; Ribas, I.; Soliani, V.; Vaisman, A.A. Indexing Continuous Paths in Temporal Graphs. In Proceedings of the New Trends in Database and Information Systems—ADBIS 2022 Short Papers, Doctoral Consortium and Workshops: DOING, K-GALS, MADEISD, MegaData, SWODCH, Turin, Italy, 5–8 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1652, pp. 232–242. [Google Scholar] [CrossRef]
- Francis, N.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.; Taylor, A. Cypher: An Evolving Query Language for Property Graphs. In Proceedings of the SIGMOD, Houston, TX, USA, 10–15 June 2018; ACM: New York, NY, USA, 2018; pp. 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Schuster, M.; Selmer, P.; Voigt, H. Updating Graph Databases with Cypher. Proc. VLDB Endow. 2019, 12, 2242–2253. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.F. Maintaining Knowledge about Temporal Intervals. Commun. ACM 1983, 26, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Shuai, Z.; Yoon, S.; Oh, S.; Yang, M.H. Traffic Modeling and Prediction Using Sensor Networks: Who Will Go Where and When? Acm Trans. Sens. Netw. 2012, 9, 1–28. [Google Scholar] [CrossRef]
Count | Mean | Std | Min | Max | |||
---|---|---|---|---|---|---|---|
93,908.00 | 3850.90 | 4855.57 | 0.00 | 1128.24 | 1879.72 | 4228.44 | 66,907.53 |
Station | Count | Mean | Std | Min | Max | |||
---|---|---|---|---|---|---|---|---|
2976 | 4701.02 | 2356.42 | 883.85 | 3818.32 | 4706.55 | 6433.83 | 10,478.80 | |
2976 | 3408.36 | 1549.54 | 797.29 | 2581.77 | 3536.82 | 4534.83 | 6671.01 | |
2511 | 10,655.99 | 5657.09 | 899.97 | 7561.64 | 12,318.48 | 14,829.78 | 20,517.83 | |
2851 | 7158.43 | 4148.50 | 1560.24 | 2457.55 | 6910.73 | 10,828.04 | 19,071.58 | |
2976 | 1478.86 | 389.13 | 897.88 | 1041.66 | 1518.26 | 1778.96 | 2570.55 | |
2976 | 1787.50 | 694.76 | 980.04 | 1126.64 | 1710.84 | 2169.00 | 5704.99 |
Query | Nr.Paths | Execution (ms.) |
1 | 2 | 706 |
2 | 3 | 859 |
3 | 1 | 446 |
4 | 4 | 3412 |
5 | 3 | 689 |
6 | 5 | 1550 |
7 | 5 | 1086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollen, E.; Hendrix, R.; Kuijpers, B.; Soliani, V.; Vaisman, A. Analysing River Systems with Time Series Data Using Path Queries in Graph Databases. ISPRS Int. J. Geo-Inf. 2023, 12, 94. https://doi.org/10.3390/ijgi12030094
Bollen E, Hendrix R, Kuijpers B, Soliani V, Vaisman A. Analysing River Systems with Time Series Data Using Path Queries in Graph Databases. ISPRS International Journal of Geo-Information. 2023; 12(3):94. https://doi.org/10.3390/ijgi12030094
Chicago/Turabian StyleBollen, Erik, Rik Hendrix, Bart Kuijpers, Valeria Soliani, and Alejandro Vaisman. 2023. "Analysing River Systems with Time Series Data Using Path Queries in Graph Databases" ISPRS International Journal of Geo-Information 12, no. 3: 94. https://doi.org/10.3390/ijgi12030094
APA StyleBollen, E., Hendrix, R., Kuijpers, B., Soliani, V., & Vaisman, A. (2023). Analysing River Systems with Time Series Data Using Path Queries in Graph Databases. ISPRS International Journal of Geo-Information, 12(3), 94. https://doi.org/10.3390/ijgi12030094