Image Retrieval Method Based on Visual Map Pre-Sampling Construction in Indoor Positioning
Abstract
:1. Introduction
2. Related Work
2.1. Visual Map
2.2. Content-Based Image Retrieval
3. Methodology
3.1. Establishment of Indoor Positioning Image Database
3.2. Deep Hash Model
3.3. Optimization
4. Experiment
4.1. Database
4.2. Experimental Design and Results
4.2.1. Experimental Design
4.2.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weiser, M. The computer for the 21st Century. IEEE Pervasive Comput. 2002, 1, 19–25. [Google Scholar] [CrossRef]
- Huang, K.; He, K.; Du, X. A hybrid method to improve the BLE-based indoor positioning in a dense bluetooth environment. Sensors 2019, 19, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinh, T.-M.T.; Duong, N.-S.; Sandrasegaran, K. Smartphone-based indoor positioning using BLE iBeacon and reliable lightweight fingerprint map. IEEE Sens. J. 2020, 20, 10283–10294. [Google Scholar] [CrossRef]
- Hao, Z.; Dang, J.; Cai, W.; Duan, Y. A Multi-Floor Location Method Based on Multi-Sensor and WiFi Fingerprint Fusion. IEEE Access 2020, 8, 223765–223781. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, K.; Wang, W.; Li, X. A Self-Adaptive AP Selection Algorithm Based on Multiobjective Optimization for Indoor WiFi Positioning. IEEE Internet Things J. 2021, 8, 1406–1416. [Google Scholar] [CrossRef]
- Karakaya, S.; Ocak, H. Low Cost Easy-to-Install Indoor Positioning System. J. Intell. Robot. Syst. 2020, 100, 131–144. [Google Scholar] [CrossRef]
- Zhu, X.; Yi, J.; Cheng, J.; He, L. Adapted Error Map Based Mobile Robot UWB Indoor Positioning. IEEE Trans. Instrum. Meas. 2020, 69, 6336–6350. [Google Scholar] [CrossRef]
- Piciarelli, C. Visual Indoor Localization in Known Environments. IEEE Signal Process. Lett. 2016, 23, 1330–1334. [Google Scholar] [CrossRef]
- Li, M.; Chen, R.; Liao, X.; Guo, B.; Zhang, W.; Guo, G. A Precise Indoor Visual Positioning Approach Using a Built Image Feature Database and Single User Image from Smartphone Cameras. Remote Sens. 2020, 12, 869. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Liu, J.; Li, Z.; Liu, K.; Xu, B. Accurate Smartphone Indoor Visual Positioning Based on a High-Precision 3D Photorealistic Map. Sensors 2018, 18, 1974. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, B.; Jin, Y.; Huang, L.; Zhang, H.; Liang, X. Image-Based Indoor Localization Using Smartphone Camera. Wirel. Commun. Mob. Comput. 2021, 2021, e3279059. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Hu, B. Indoor Visual Positioning Method Based on Image Features. Sens. Mater. 2022, 34, 337. [Google Scholar] [CrossRef]
- Jiao, J.; Li, F.; Tang, W.; Deng, Z.; Cao, J. A hybrid fusion of wireless signals and RGB image for indoor positioning. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718757664. [Google Scholar] [CrossRef]
- Poulose, A.; Han, D.S. Hybrid Indoor Localization Using IMU Sensors and Smartphone Camera. Sensors 2019, 19, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xia, H.; Liu, Q.; Wei, C.; Fu, D.; Qiao, Y. Visual Positioning in Indoor Environments Using RGB-D Images and Improved Vector of Local Aggregated Descriptors. ISPRS Int. J. Geo-Inf. 2021, 10, 195. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, J.; Li, Q.; Liu, T.; Fang, Z. Continuous Indoor Visual Localization Using a Spatial Model and Constraint. IEEE Access 2020, 8, 69800–69815. [Google Scholar] [CrossRef]
- Lu, G.; Yan, Y.; Sebe, N.; Kambhamettu, C. Indoor localization via multi-view images and videos. Comput. Vis. Image Underst. 2017, 161, 145–160. [Google Scholar] [CrossRef]
- Feng, G.; Ma, L.; Tan, X. Visual Map Construction Using RGB-D Sensors for Image-Based Localization in Indoor Environments. J. Sens. 2017, 2017, e8037607. [Google Scholar] [CrossRef] [Green Version]
- Chavda, S.; Goyani, M.M. Content-Based Image Retrieval: The State of the Art. Int. J.-Gener. Comput. 2019, 10, 193–212. [Google Scholar] [CrossRef]
- Yang, E.; Deng, C.; Liu, T.; Liu, W.; Tao, D. Semantic structure-based unsupervised deep hashing. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13 July 2018; pp. 1064–1070. Available online: https://dl.acm.org/doi/abs/10.5555/3304415.3304566 (accessed on 13 April 2022).
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Tieleman, T.; Hinton, G. RMSprop Divide the Gradient by a Running Average of its Recent Magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26–30. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F. Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2916–2929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, Y.; Torralba, A.; Fergus, R. Spectral hashing. In Proceedings of the 21st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 8 December 2008; pp. 1753–1760. Available online: https://dl.acm.org/doi/abs/10.5555/2981780.2981999 (accessed on 25 August 2022).
- Jin, Z.; Li, C.; Lin, Y.; Cai, D. Density Sensitive Hashing. IEEE Trans. Cybern. 2014, 44, 1362–1371. [Google Scholar] [CrossRef] [Green Version]
- Dai, B.; Guo, R.; Kumar, S.; He, N.; Song, L. Stochastic Generative Hashing. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 913–922. Available online: https://dl.acm.org/doi/abs/10.5555/3305381.3305476 (accessed on 25 August 2022).
- Lin, K.; Lu, J.; Chen, C.-S.; Zhou, J. Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1183–1192. [Google Scholar] [CrossRef]
- Yang, E.; Liu, T.; Deng, C.; Liu, W.; Tao, D. DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2946–2955. [Google Scholar] [CrossRef] [Green Version]
Baseline Image Coordinates (m) | Image Coordinates (m) | Image Coordinates (m) | Image Coordinates (m) | |||
---|---|---|---|---|---|---|
(0, 0) | (0, 0.6) | Coverage Ratio 0.837 Match Ratio 0.753 | (0, 1.2) | Coverage Ratio 0.787 Match Ratio 0.746 | (0, 1.8) | Coverage Ratio 0.743 Match Ratio 0.677 |
(0.6, 0) | (0.6, 0.6) | Coverage Ratio 0.775 Match Ratio 0.808 | (0.6, 1.2) | Coverage Ratio 0.678 Match Ratio 0.713 | (0.6, 1.8) | Coverage Ratio 0.681 Match Ratio 0.639 |
(1.2, 0) | (1.2, 0.6) | Coverage Ratio 0.833 Match Ratio 0.750 | (1.2, 1.2) | Coverage Ratio 0.790 Match Ratio 0.697 | (1.2, 1.8) | Coverage Ratio 0.728 Match Ratio 0.543 |
(1.8, 0) | (1.8, 0.6) | Coverage Ratio 0.761 Match Ratio 0.843 | (1.8, 1.2) | Coverage Ratio 0.716 Match Ratio 0.755 | (1.8, 1.8) | Coverage Ratio 0.689 Match Ratio 0.612 |
(2.4, 0) | (2.4, 0.6) | Coverage Ratio 0.772 Match Ratio 0.765 | (2.4, 1.2) | Coverage Ratio 0.784 Match Ratio 0.591 | (2.4, 1.8) | Coverage Ratio 0.682 Match Ratio 0.473 |
(3.0, 0) | (3.0, 0.6) | Coverage Ratio 0.839 Match Ratio 0.799 | (3.0, 1.2) | Coverage Ratio 0.828 Match Ratio0.662 | (3.0, 1.8) | Coverage Ratio 0.778 Match Ratio 0.493 |
(3.6, 0) | (3.6, 0.6) | Coverage Ratio 0.839 Match Ratio 0.765 | (3.6, 1.2) | Coverage Ratio 0.805 Match Ratio 0.759 | (3.6, 1.8) | Coverage Ratio 0.756 Match Ratio 0.483 |
Label ID | Category | The Number of Images | Label ID | Category | The Number of Images |
---|---|---|---|---|---|
75 | window | 110 | 68 | heating | 63 |
74 | table | 31 | 67 | glass door | 20 |
73 | storage room | 63 | 66 | garbage can | 102 |
72 | stairwell | 114 | 65 | flower stand | 189 |
71 | stairs | 4 | 64 | fire cabinet | 191 |
70 | open elevator | 3 | 63 | extinguisher | 273 |
69 | laboratory | 116 | 62 | elevator | 22 |
Hyperparameter | 16 bits | 32 bits | 64 bits | 128 bits |
---|---|---|---|---|
0.7324 | 0.7410 | 0.7458 | 0.7482 | |
0.7112 | 0.7266 | 0.7386 | 0.7394 | |
0.5599 | 0.6293 | 0.6033 | 0.6609 |
Methods | 16 bits | 32 bits | 64 bits | 128 bits |
---|---|---|---|---|
ITQ | 0.6492 | 0.6518 | 0.6546 | 0.6577 |
SH | 0.6091 | 0.6105 | 0.6033 | 0.6014 |
DSH | 0.6452 | 0.6547 | 0.6551 | 0.6557 |
SGH | 0.6362 | 0.6283 | 0.6253 | 0.6206 |
DeepBit | 0.5934 | 0.5933 | 0.6199 | 0.6349 |
SSDH | 0.7240 | 0.7276 | 0.7377 | 0.7343 |
DistillHash | 0.6964 | 0.7056 | 0.7075 | 0.6995 |
Ours | 0.7324 | 0.7410 | 0.7458 | 0.7482 |
Methods | 16 bits | 32 bits | 64 bits | 128 bits |
---|---|---|---|---|
SSDH | 0.086673 s | 0.087979 s | 0.087694 s | 0.088878 s |
Ours | 0.087017 s | 0.089920 s | 0.089114 s | 0.089756 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Qin, D.; Zheng, P.; Ma, L. Image Retrieval Method Based on Visual Map Pre-Sampling Construction in Indoor Positioning. ISPRS Int. J. Geo-Inf. 2023, 12, 169. https://doi.org/10.3390/ijgi12040169
Bai J, Qin D, Zheng P, Ma L. Image Retrieval Method Based on Visual Map Pre-Sampling Construction in Indoor Positioning. ISPRS International Journal of Geo-Information. 2023; 12(4):169. https://doi.org/10.3390/ijgi12040169
Chicago/Turabian StyleBai, Jianan, Danyang Qin, Ping Zheng, and Lin Ma. 2023. "Image Retrieval Method Based on Visual Map Pre-Sampling Construction in Indoor Positioning" ISPRS International Journal of Geo-Information 12, no. 4: 169. https://doi.org/10.3390/ijgi12040169
APA StyleBai, J., Qin, D., Zheng, P., & Ma, L. (2023). Image Retrieval Method Based on Visual Map Pre-Sampling Construction in Indoor Positioning. ISPRS International Journal of Geo-Information, 12(4), 169. https://doi.org/10.3390/ijgi12040169