The Spatial Association between Residents’ Leisure Activities and Tourism Activities Using Colocation Pattern Measures: A Case Study of Nanjing, China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Global Colocation Quotient (GCLQ)
3.2. Local Colocation Quotient (LCLQ)
4. Study Area and Data Sources
5. Results
5.1. Exploratory Spatial Data Analysis Based on Kernel Density Estimation
5.2. Global Colocation Analysis
5.3. Local Colocation Quotient Analysis
6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Edwards, D.; Griffin, T.; Hayllar, B. Urban tourism research: Developing an agenda. Ann. Tour. Res. 2008, 35, 1032–1052. [Google Scholar] [CrossRef]
- Van der Borg, J.; Costa, P.; Gotti, G. Tourism in European heritage cities. Ann. Tour. Res. 1996, 23, 306–321. [Google Scholar] [CrossRef]
- Var, T.; Kendall, K.W.; Tarakcioglu, E. Resident attitudes towards tourists in a Turkish resort town. Ann. Tour. Res. 1985, 12, 652–658. [Google Scholar] [CrossRef]
- Stylidis, D. Exploring resident–tourist interaction and its impact on tourists’ destination image. J. Travel Res. 2022, 61, 186–201. [Google Scholar] [CrossRef]
- Williams, J.; Lawson, R. Community issues and resident opinions of tourism. Ann. Tour. Res. 2001, 28, 269–290. [Google Scholar] [CrossRef]
- Harrill, R. Residents’ attitudes toward tourism development: A literature review with implications for tourism planning. J. Plan. Lit. 2004, 18, 251–266. [Google Scholar] [CrossRef]
- Haley, A.J.; Snaith, T.; Miller, G. The social impacts of tourism a case study of Bath, UK. Ann. Tour. Res. 2005, 32, 647–668. [Google Scholar] [CrossRef]
- Harrill, R.; Potts, T.D. Tourism planning in historic districts: Attitudes toward tourism development in Charleston. J. Am. Plan. Assoc. 2003, 69, 233–244. [Google Scholar] [CrossRef]
- Mou, N.; Zheng, Y.; Makkonen, T.; Yang, T.; Tang, J.J.; Song, Y. Tourists’ digital footprint: The spatial patterns of tourist flows in Qingdao, China. Tour. Manag. 2020, 81, 104151. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, J.; Liu, X.; Guo, Z. Reinterpreting activity space in tourism by mapping tourist-resident interactions in populated cities. Tour. Recreat. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Husbands, W.C. Pattern, Structure and Formation of Activity Space in Hinterland Resorts: A Study of Barbados. Ph.D. Thesis, Western University, London, ON, Canada, 1984. [Google Scholar]
- Pearce, D.G. An integrative framework for urban tourism research. Ann. Tour. Res. 2001, 28, 926–946. [Google Scholar] [CrossRef]
- Ashworth, G.J. Do we understand urban tourism. J. Tour. Hosp. 2012, 1, 1–2. [Google Scholar] [CrossRef]
- Su, X.; Spierings, B.; Hooimeijer, P. Different urban settings affect multi-dimensional tourist-resident interactions. Tour. Geogr. 2022, 24, 815–836. [Google Scholar] [CrossRef]
- Hoogendoorn, G.; Hammett, D.J. Resident tourists and the local ‘other’. Tour. Geogr. 2021, 23, 1021–1039. [Google Scholar] [CrossRef]
- Li, D.; Zhou, X.; Wang, M. Analyzing and visualizing the spatial interactions between tourists and locals: A Flickr study in ten US cities. Cities 2018, 74, 249–258. [Google Scholar] [CrossRef]
- Su, X.; Spierings, B.; Dijst, M.; Tong, Z. Analysing trends in the spatio-temporal behaviour patterns of mainland Chinese tourists and residents in Hong Kong based on Weibo data. Curr. Issues Tour. 2020, 23, 1542–1558. [Google Scholar] [CrossRef]
- Ashworth, G.; Page, S.J. Urban tourism research: Recent progress and current paradoxes. Tour. Manag. 2011, 32, 1–15. [Google Scholar] [CrossRef]
- García-Palomares, J.C.; Gutiérrez, J.; Mínguez, C. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Appl. Geogr. 2015, 63, 408–417. [Google Scholar] [CrossRef]
- Vu, H.Q.; Li, G.; Law, R.; Ye, B.H. Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tour. Manag. 2015, 46, 222–232. [Google Scholar] [CrossRef]
- Kotus, J.; Rzeszewski, M.; Ewertowski, W. Tourists in the spatial structures of a big Polish city: Development of an uncontrolled patchwork or concentric spheres? Tour. Manag. 2015, 50, 98–110. [Google Scholar] [CrossRef]
- Paldino, S.; Bojic, I.; Sobolevsky, S.; Ratti, C.; González, M.C. Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 2015, 4, 5. [Google Scholar] [CrossRef]
- Kádár, B.; Gede, M. Where do tourists go? Visualizing and analysing the spatial distribution of geotagged photography. Cartogr. Int. J. Geogr. Inf. Geovis. 2013, 48, 78–88. [Google Scholar] [CrossRef]
- Meyer, B.; Niezgoda, A. The impact of the perception of leisure on recreational and tourism spaces in an urban area. Tourism/Turyzm 2018, 28, 47–52. [Google Scholar] [CrossRef]
- Xu, Y.; Ran, X.; Liu, Y.; Huang, W. Comparing differences in the spatiotemporal patterns between resident tourists and non-resident tourists using hotel check-in registers. Tour. Manag. Perspect. 2021, 39, 100860. [Google Scholar] [CrossRef]
- Ripley, B.D. The second-order analysis of stationary point processes. J. Appl. Probab. 1976, 13, 255–266. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Leslie, T.F.; Kronenfeld, B.J. The Colocation Quotient: A New Measure of Spatial Association Between Categorical Subsets of Points. Geogr. Anal. 2011, 43, 306–326. [Google Scholar] [CrossRef]
- Cromley, R.G.; Hanink, D.M.; Bentley, G.C. Geographically weighted colocation quotients: Specification and application. Prof. Geogr. 2014, 66, 138–148. [Google Scholar] [CrossRef]
- Wang, F.; Hu, Y.; Wang, S.; Li, X. Local indicator of colocation quotient with a statistical significance test: Examining spatial association of crime and facilities. Prof. Geogr. 2017, 69, 22–31. [Google Scholar] [CrossRef]
- Xia, Z.; Li, H.; Chen, Y.; Yu, W. Detecting urban fire high-risk regions using colocation pattern measures. Sustain. Cities Soc. 2019, 49, 101607. [Google Scholar] [CrossRef]
- Córdoba, H.A.; Walter, R.J.; Foote, N.S. The residential segregation of San Antonio, Texas in 1910: An analysis of ethno-racial and occupational spatial patterns with the colocation quotient. Urban Geogr. 2018, 39, 988–1017. [Google Scholar] [CrossRef]
- Isserman, A.M. The location quotient approach to estimating regional economic impacts. J. Am. Inst. Plan. 1977, 43, 33–41. [Google Scholar] [CrossRef]
- Blair, J.P. Local Economic Development: Analysis and Practice; Sage: Newcastle upon Tyne, UK, 1995. [Google Scholar]
- Yue, H.; Zhu, X.; Ye, X.; Guo, W. The local colocation patterns of crime and land-use features in Wuhan, China. ISPRS Int. J. Geo-Inf. 2017, 6, 307. [Google Scholar] [CrossRef]
- Elldér, E.; Haugen, K.; Vilhelmson, B. When local access matters: A detailed analysis of place, neighbourhood amenities and travel choice. Urban Stud. 2022, 59, 120–139. [Google Scholar] [CrossRef]
- Ferrer, S.; Ruiz, T. The impact of the built environment on the decision to walk for short trips: Evidence from two Spanish cities. Transp. Policy 2018, 67, 111–120. [Google Scholar] [CrossRef]
- Bartzokas-Tsiompras, A.; Bakogiannis, E. Quantifying and visualizing the 15-minute walkable city concept across Europe: A multicriteria approach. J. Maps 2022, 1–9. [Google Scholar] [CrossRef]
- Qian, C.; Li, W.; Yang, D.; Ran, B.; Li, F. Measuring Spatial Distribution of Tourist Flows Based on Cellular Signalling Data: A Case Study of Shangha. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2584–2590. [Google Scholar]
- Xu, F.; Wang, X.; Xu, L.; Hu, M.; Bing, P. Identification and Division of Nanjing Tourist Source Market Based on Mobile Phone Signal Data. Geogr. Geo-Inf. Sci. 2019, 35, 70–75. [Google Scholar]
- Shen, Y.; Chai, Y.W.; Guo, W.B. Day-to-day variability in activity-travel behaviorbased on GPS data:A case study in suburbs of Beijing. Geogr. Res. 2013, 32, 701–710. [Google Scholar]
- Song, L. Explore the Urban Residents’ Local Tourism Rules and Market Development Strategy: Taking Nanjing of Jiangsu as An Example. Jiangsu Commer. Forum 2020, 428, 39–42. [Google Scholar] [CrossRef]
- Gospodini, A. Urban design, urban space morphology, urban tourism: An emerging new paradigm concerning their relationship. Eur. Plan. Stud. 2001, 9, 925–934. [Google Scholar] [CrossRef]
- Snepenger, D.J.; Murphy, L.; O’Connell, R.; Gregg, E. Tourists and residents use of a shopping space. Ann. Tour. Res. 2003, 30, 567–580. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, X.; Li, Y. Understanding the tourist mobility using GPS: Where is the next place? Tour. Manag. 2017, 59, 267–280. [Google Scholar] [CrossRef]
- Cheek, N.H.; Burch, W.R. The Social Organization of Leisure in Human Society; Harper & Row: New York, NY, USA, 1976. [Google Scholar]
- Freytag, T. Making a difference: Tourist practices of repeat visitors in the city of Paris. Soc. Geogr. Discuss. 2008, 4, 1–25. [Google Scholar] [CrossRef]
- Goreaud, F.; Pélissier, R. On explicit formulas of edge effect correction for Ripley’s K-function. J. Veg. Sci. 1999, 10, 433–438. [Google Scholar] [CrossRef]
Location | LON | LAT |
---|---|---|
2098710641 | 118.91625 | 32.05497 |
2098613450 | 119.06581 | 32.02686 |
2062518602 | 118.87331 | 31.73291 |
ID | Walktime | Location | City |
---|---|---|---|
0072fcd5c7b63666 3460f44d3eed6178 | 20151117061526 | 2098710641 | 25 |
0643494c89960c2f 569a6b6ce4c45e97 | 20151117024335 | 2062518602 | 25 |
075d5c10d5a4dbbe 982677b27e40ae9c | 20151117185144 | 2098613450 | 591 |
Time Slot | Number of Mobile Phone Signaling Data (Ten Thousand) | |||||
---|---|---|---|---|---|---|
17 November 2015 (Weekday) | Sum | 21 November 2015 (Weekend) | Sum | |||
Resident | Tourist | Resident | Tourist | |||
Morning (9:00–10:59) | 55.53 | 6.83 | 62.36 | 54.19 | 9.13 | 63.32 |
Noon (11:00–13:59) | 88.18 | 14.50 | 102.68 | 91.00 | 13.24 | 104.24 |
Afternoon (14:00–17:59) | 119.51 | 17.98 | 137.49 | 123.41 | 18.02 | 141.43 |
Night (18:00–22:59) | 124.91 | 16.85 | 141.76 | 131.52 | 19.71 | 151.23 |
Sum | 388.13 | 56.16 | 444.29 | 400.12 | 60.10 | 460.22 |
17 November (Weekday) | 21 November (Weekend) | |
---|---|---|
Residents | Residents | |
Tourists (morning) | 0.916 * | 0.921 * |
Tourists (noon) | 0.914 * | 0.921 * |
Tourists (afternoon) | 0.918 * | 0.925 * |
Tourists (night) | 0.917 * | 0.933 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Hu, M.; Qi, J.; Han, B.; Wang, H.; Xu, F. The Spatial Association between Residents’ Leisure Activities and Tourism Activities Using Colocation Pattern Measures: A Case Study of Nanjing, China. ISPRS Int. J. Geo-Inf. 2023, 12, 223. https://doi.org/10.3390/ijgi12060223
Zheng J, Hu M, Qi J, Han B, Wang H, Xu F. The Spatial Association between Residents’ Leisure Activities and Tourism Activities Using Colocation Pattern Measures: A Case Study of Nanjing, China. ISPRS International Journal of Geo-Information. 2023; 12(6):223. https://doi.org/10.3390/ijgi12060223
Chicago/Turabian StyleZheng, Jiemin, Mingxing Hu, Junheng Qi, Bing Han, Hui Wang, and Feifei Xu. 2023. "The Spatial Association between Residents’ Leisure Activities and Tourism Activities Using Colocation Pattern Measures: A Case Study of Nanjing, China" ISPRS International Journal of Geo-Information 12, no. 6: 223. https://doi.org/10.3390/ijgi12060223
APA StyleZheng, J., Hu, M., Qi, J., Han, B., Wang, H., & Xu, F. (2023). The Spatial Association between Residents’ Leisure Activities and Tourism Activities Using Colocation Pattern Measures: A Case Study of Nanjing, China. ISPRS International Journal of Geo-Information, 12(6), 223. https://doi.org/10.3390/ijgi12060223