The Spatial Effect of Accessibility to Public Service Facilities on Housing Prices: Highlighting the Housing Equity
Abstract
:1. Introduction
2. Literature Review
2.1. Accessibility and Capitalisation Effect of Public Service Facilities on Housing Prices
2.2. The Hedonic Price Model Is Rooted in Public Services Being Capitalised into Housing Prices
2.3. Measurement of the Capitalisation Effect of Different Levels in Public Service Facilities
3. Methodology
3.1. Study Area and Data Sources
3.2. Accessibility Measures
3.3. Hotspot Analysis
3.4. Hedonic Price Model
3.5. Geographical Detector and Spatial Association Detector Model
4. Results
4.1. Pattern Characteristics of Public Service Accessibility
4.2. The Influence of Driving Factors on Housing Prices
4.3. Statistical Significance of Differences among Driving Factors
4.4. The Interactive Effects of Driving Factors on Housing Prices
5. Discussion
5.1. The Heterogeneous Capitalisation Effect of Housing Prices
5.2. Contributions and Limitations
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alibašić, H. Envisaging the Future of Strategic Resilience and Sustainability Planning. In Strategic Resilience and Sustainability Planning; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Kenworthy, L.; Pontusson, J. Rising Inequality and the Politics of Redistribution in Affluent Countries. Perspect. Polit. 2005, 3, 449–471. [Google Scholar] [CrossRef]
- Xu, Y.; Song, W.; Liu, C. Social-Spatial Accessibility to Urban Educational Resources under the School District System: A Case Study of Public Primary Schools in Nanjing, China. Sustainability 2018, 10, 2305. [Google Scholar] [CrossRef]
- Hoekstra, J.; Dol, K. Attitudes towards Housing Equity Release Strategies among Older Home Owners: A European Comparison. J. Hous. Built Environ. 2021, 36, 1347–1366. [Google Scholar] [CrossRef]
- Mostafa, A.; Wong, F.W.; Hui, C.M.E. Relationship between Housing Affordability and Economic Development in Mainland China-Case of Shanghai. J. Urban Plan. Dev. 2006, 132, 62–70. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, X.; Li, Q.; Yu, X.; Chen, J.; Guo, J. Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data. ISPRS Int. J. Geo-Inf. 2017, 6, 358. [Google Scholar] [CrossRef]
- Rogers, D.S.; Duraiappah, A.K.; Antons, D.C.; Munoz, P.; Bai, X.; Fragkias, M.; Gutscher, H. A Vision for Human Well-Being: Transition to Social Sustainability. Curr. Opin. Environ. Sustain. 2012, 4, 61–73. [Google Scholar] [CrossRef]
- Yung, E.H.K.; Conejos, S.; Chan, E.H.W. Public Open Spaces Planning for the Elderly: The Case of Dense Urban Renewal Districts in Hong Kong. Land Use Policy 2016, 59, 1–11. [Google Scholar] [CrossRef]
- Wang, S.; Yung, E.H.K.; Cerin, E.; Yu, Y.; Yu, P. Older People’s Usage Pattern, Satisfaction with Community Facility and Well-Being in Urban Old Districts. Int. J. Environ. Res. Public Health 2022, 19, 10297. [Google Scholar] [CrossRef]
- Yung, E.H.K.; Winky, K.O.H.; Chan, E.H.W. Elderly Satisfaction with Planning and Design of Public Parks in High Density Old Districts: An Ordered Logit Model. Landsc. Urban Plan 2017, 165, 39–53. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.W.; Wang, X. Are Low-End Housing Purchasers More Willing to Pay for Access to Basic Public Services? Evidence from China. Res. Transp. Econ. 2019, 76, 100734. [Google Scholar] [CrossRef]
- Carlsen, F.; Langset, B.; Rattsø, J.; Stambøl, L. Using Survey Data to Study Capitalization of Local Public Services. Reg. Sci. Urban Econ. 2009, 39, 688–695. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Shi, W.; Deng, Z.; Wang, H. Residential Clustering and Spatial Access to Public Services in Shanghai. Habitat Int. 2015, 46, 119–129. [Google Scholar] [CrossRef]
- Wen, H.; Xiao, Y.; Hui, E.C.M. Quantile Effect of Educational Facilities on Housing Price: Do Homebuyers of Higher-Priced Housing Pay More for Educational Resources? Cities 2019, 90, 100–112. [Google Scholar] [CrossRef]
- Hilber, C.A.L. The Economic Implications of House Price Capitalization: A Synthesis. Real Estate Econ. 2017, 45, 301–339. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Qiu, T.; Jing, Y.; Fang, F. The Effects of Locational Factors on the Housing Prices of Residential Communities: The Case of Ningbo, China. Habitat Int. 2018, 81, 1–11. [Google Scholar] [CrossRef]
- Yang, S.; Hu, S.; Wang, S.; Zou, L. Effects of Rapid Urban Land Expansion on the Spatial Direction of Residential Land Prices: Evidence from Wuhan, China. Habitat Int. 2020, 101, 102186. [Google Scholar] [CrossRef]
- Jayantha, W.M.; Lam, S.O. Capitalization of Secondary School Education into Property Values: A Case Study in Hong Kong. Habitat Int. 2015, 50, 12–22. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L. Housing Inequality in Transitional Beijing. Int. J. Urban Reg. Res. 2009, 33, 936–956. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Z.; Chen, Y. Housing Inequality in Urban China: Theoretical Debates, Empirical Evidences, and Future Directions. J. Plan. Lit. 2019, 35, 41–53. [Google Scholar] [CrossRef]
- Li, Z.; Wu, F. Socio-Spatial Differentiation and Residential Inequalities in Shanghai: A Case Study of Three Neighbourhoods. Hous. Stud. 2006, 21, 695–717. [Google Scholar] [CrossRef]
- Li, Z.; Wu, F. Tenure-Based Residential Segregation in Post-Reform Chinese Cities: A Case Study of Shanghai. Trans. Inst. Br. Geogr. 2008, 33, 404–419. [Google Scholar] [CrossRef]
- Knight, J. China’s Evolving Inequality. J. Chin. Econ. Bus. Stud. 2017, 15, 307–323. [Google Scholar] [CrossRef]
- Chen, J.; Guo, F.; Wu, Y. One Decade of Urban Housing Reform in China: Urban Housing Price Dynamics and the Role of Migration and Urbanization, 1995-2005. Habitat Int. 2011, 35, 1–8. [Google Scholar] [CrossRef]
- Yu, P.; Chen, Y.; Xu, Q.; Zhang, S.; Yung, E.H.K.; Chan, E.H.W. Embedding of Spatial Equity in a Rapidly Urbanising Area: Walkability and Air Pollution Exposure. Cities 2022, 131, 103942. [Google Scholar] [CrossRef]
- Yu, P.; Yung, E.H.K.; Chan, E.H.W.; Wang, S.; Chen, Y.; Chen, Y. Capturing Open Space Fragmentation in High—Density Cities: Towards Sustainable Open Space Planning. Appl. Geogr. 2023, 154, 102927. [Google Scholar] [CrossRef]
- Logan, J.R.; Fang, Y.; Zhang, Z. Access to Housing in Urban China. Int. J. Urban Reg. Res. 2009, 33, 914–935. [Google Scholar] [CrossRef]
- Seo, K.; Golub, A.; Kuby, M. Combined Impacts of Highways and Light Rail Transit on Residential Property Values: A Spatial Hedonic Price Model for Phoenix, Arizona. J. Transp. Geogr. 2014, 41, 53–62. [Google Scholar] [CrossRef]
- Dai, X.; Bai, X.; Xu, M. The Influence of Beijing Rail Transfer Stations on Surrounding Housing Prices. Habitat Int. 2016, 55, 79–88. [Google Scholar] [CrossRef]
- Andreyeva, E.; Patrick, C. Paying for Priority in School Choice: Capitalization Effects of Charter School Admission Zones. J. Urban Econ. 2017, 100, 19–32. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, P.; Chen, Y.; Jing, Y.; Zeng, F. Accessibility of Park Green Space in Wuhan, China: Implications for Spatial Equity in the Post-COVID-19 Era. Int. J. Environ. Res. Public Health 2022, 19, 5440. [Google Scholar] [CrossRef]
- Feng, X.; Humphreys, B.R. The Impact of Professional Sports Facilities on Housing Values: Evidence from Census Block Group Data. City Cult. Soc. 2012, 3, 189–200. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Wu, Y.; Tian, G. Analyzing Housing Prices in Shanghai with Open Data: Amenity, Accessibility and Urban Structure. Cities 2019, 91, 165–179. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Deng, Z.; Shi, W.; Wang, H. Local Public Expenditure, Public Service Accessibility, and Housing Price in Shanghai, China. Urban Aff. Rev. 2019, 55, 148–184. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Du, Q.; Luo, P. Spatial Effects of Accessibility to Parks on Housing Prices in Shenzhen, China. Habitat Int. 2017, 63, 45–54. [Google Scholar] [CrossRef]
- Tian, G.; Wei, Y.D.; Li, H. Effects of Accessibility and Environmental Health Risk on Housing Prices: A Case of Salt Lake County, Utah. Appl. Geogr. 2017, 89, 12–21. [Google Scholar] [CrossRef]
- Lan, F.; Wu, Q.; Zhou, T.; Da, H. Spatial Effects of Public Service Facilities Accessibility on Housing Prices: A Case Study of Xi’an, China. Sustainability 2018, 10, 4503. [Google Scholar] [CrossRef]
- Panduro, T.E.; Veie, K.L. Classification and Valuation of Urban Green Spaces-A Hedonic House Price Valuation. Landsc. Urban Plan. 2013, 120, 119–128. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Huang, Y.; Wilson, B.; Mosey, G.; Deal, B. Spatial Impacts of Multimodal Accessibility to Green Spaces on Housing Price in Cook County, Illinois. Urban For. Urban Green 2022, 67, 127370. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, Y.; Zhang, L. Do Educational Facilities Affect Housing Price? An Empirical Study in Hangzhou, China. Habitat Int. 2014, 42, 155–163. [Google Scholar] [CrossRef]
- Ligus, M.; Peternek, P. Impacts of Urban Environmental Attributes on Residential Housing Prices in Warsaw (Poland): Spatial Hedonic Analysis of City Districts. In Contemporary Trends and Challenges in Finance; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Liao, W.C.; Wang, X. Hedonic House Prices and Spatial Quantile Regression. J. Hous. Econ. 2012, 21, 16–27. [Google Scholar] [CrossRef]
- Cohen, J.P.; Ioannides, Y.M.; Wirathip Thanapisitikul, W. Spatial Effects and House Price Dynamics in the USA. J. Hous. Econ. 2016, 31, 1–13. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Fingleton, B.; Pirotte, A. Spatial Lag Models with Nested Random Effects: An Instrumental Variable Procedure with an Application to English House Prices. J. Urban Econ. 2014, 80, 76–86. [Google Scholar] [CrossRef]
- Bowes, D.R.; Ihlanfeldt, K.R. Identifying the Impacts of Rail Transit Stations on Residential Property Values. J. Urban Econ. 2001, 50, 1–25. [Google Scholar] [CrossRef]
- Debrezion, G.; Pels, E.; Rietveld, P. The Impact of Rail Transport on Real Estate Prices: An Empirical Analysis of the Dutch Housing Market. Urban Stud. 2011, 48, 997–1015. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Zhao, P. The Impact of Metro Services on Housing Prices: A Case Study from Beijing. Transportation 2017, 46, 1291–1317. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Lu, F. Exploring Housing Rent by Mixed Geographically Weighted Regression: A Case Study in Nanjing. ISPRS Int. J. Geo-Inf. 2019, 8, 431. [Google Scholar] [CrossRef]
- Bitter, C.; Mulligan, G.F.; Dall’erba, S. Incorporating Spatial Variation in Housing Attribute Prices: A Comparison of Geographically Weighted Regression and the Spatial Expansion Method. J. Geogr. Syst. 2007, 9, 7–27. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Liang, C. Spatial Spillover Effect of Urban Landscape Views on Property Price. Appl. Geogr. 2016, 72, 26–35. [Google Scholar] [CrossRef]
- Jana, A.; Bardhan, R.; Sarkar, S.; Kumar, V. Framework to Assess and Locate Affordable and Accessible Housing for Developing Nations: Empirical Evidences from Mumbai. Habitat Int. 2016, 57, 88–99. [Google Scholar] [CrossRef]
- Zeng, W.; Rees, P.; Xiang, L. Do Residents of Affordable Housing Communities in China Suffer from Relative Accessibility Deprivation? A Case Study of Nanjing. Cities 2019, 90, 141–156. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, Accessibility and Housing Values in Metropolitan USA: A Study of Salt Lake County, Utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Levkovich, O.; Rouwendal, J.; van Marwijk, R. The Effects of Highway Development on Housing Prices. Transportation 2016, 43, 379–405. [Google Scholar] [CrossRef]
- Cheshire, P.; Sheppard, S. Capitalising the Value of Free Schools: The Impact of Supply Characteristics and Uncertainty. Econ. J. 2004, 114, 397–424. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, Y.D.; Wu, J. Amenity Effects of Urban Facilities on Housing Prices in China: Accessibility, Scarcity, and Urban Spaces. Cities 2020, 96, 102433. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, Q.; Yang, R.; Xu, C.; Wang, Y. Delineation of the Northern Border of the Tropical Zone of China’s Mainland Using Geodetector. Acta Geogr. Sin. 2017, 72, 135–147. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B.; Stein, A. The Spatial Statistic Trinity: A Generic Framework for Spatial Sampling and Inference. Environ. Model. Softw. 2020, 134, 104835. [Google Scholar] [CrossRef]
- Duan, Q.; Tan, M. Using a Geographical Detector to Identify the Key Factors That Influence Urban Forest Spatial Differences within China. Urban For. Urban Green 2020, 49, 126623. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, S.; Yung, E.H.K.; Chan, E.H.W.; Luan, B.; Chen, Y. On the Urban Compactness to Ecosystem Services in a Rapidly Urbanising Metropolitan Area: Highlighting Scale Effects and Spatial Non–Stationary. Environ. Impact Assess. Rev. 2023, 98, 106975. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, P.; Chen, Y.; Chen, Z. Spatiotemporal Dynamics of Rice–Crayfish Field in Mid-China and Its Socioeconomic Benefits on Rural Revitalisation. Appl. Geogr. 2022, 139, 102636. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, J. The Spatial Impact of Population on Housing Price in the Yangtze River Delta Urban Agglomeration, China. In Chinese Cities in the 21st Century; Springer: Berlin/Heidelberg, Germany, 2020; pp. 199–214. ISBN 9783030347802. [Google Scholar]
- Cang, X.; Luo, W. Spatial Association Detector (SPADE). Int. J. Geogr. Inf. Sci. 2018, 32, 2055–2075. [Google Scholar] [CrossRef]
- Yang, Z.; Pan, Y. Human Capital, Housing Prices, and Regional Economic Development: Will “Vying for Talent” through Policy Succeed? Cities 2020, 98, 102577. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Hu, F.Z.Y.; Qian, J. Land-Based Finance, Fiscal Autonomy and Land Supply for Affordable Housing in Urban China: A Prefecture-Level Analysis. Land Use Policy 2017, 69, 454–460. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. In Revealed Preference Approaches to Environmental Valuation Volumes I and II; Routledge: Oxford, UK, 2019; ISBN 9781351903448. [Google Scholar]
- Arundel, R. Equity Inequity: Housing Wealth Inequality, Inter and Intra-Generational Divergences, and the Rise of Private Landlordism. Hous. Theory Soc. 2017, 34, 176–200. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Zhong, J.W.; Yu, K.H. The Impact of Landscape Views and Storey Levels on Property Prices. Landsc. Urban Plan. 2012, 105, 86–93. [Google Scholar] [CrossRef]
- Wen, H.; Xiao, Y.; Zhang, L. School District, Education Quality, and Housing Price: Evidence from a Natural Experiment in Hangzhou, China. Cities 2017, 66, 72–80. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q. Analysis of Residential Space Structure Based on Housing Price in Lanzhou City. IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 022017. [Google Scholar] [CrossRef]
- Li, Z. The Impact of Metro Accessibility on Residential Property Values: An Empirical Analysis. Res. Transp. Econ. 2018, 70, 52–56. [Google Scholar] [CrossRef]
Characteristic Classification | Variable | Service Radius |
---|---|---|
Recreational facilities | Restaurant and bar | 300 m |
Store | 500 m | |
Medical facilities | Hospital | 2000 m |
Clinic | 300 m | |
Educational facilities | School | 1000 m |
Kindergarten | 300 m | |
Financial facilities | Bank | 1000 m |
ATM | 300 m |
Variables | Variable Definition and Quantisation | Expected Sign |
---|---|---|
Dependent variable | ||
HP | Housing price (yuan/m2) | |
Independent variables | ||
A_RESTA | Accessibility to restaurants and bars | + |
A_STORE | Accessibility to convenience stores | + |
A_HOSPI | Accessibility to hospitals | + |
A_CLINIC | Accessibility to clinics | + |
A_SCHOOL | Accessibility to primary and middle schools | + |
A_KINDE | Accessibility to kindergartens | + |
A_BANK | Accessibility to banks | + |
A_ATM | Accessibility to ATMs | + |
D_METRO | Distance to the nearest metro station (km) | − |
D_BUS | Distance to the nearest bus station (km) | − |
FLOOR | Number of plies (number) | + |
D_WATER | Distance to the nearest water (km) | − |
D_PARK | Distance to the nearest park (km) | − |
D_INDUS | Distance to the nearest industrial land (km) | + |
PM2.5 | PM2.5 concentration (μg/m3) | − |
Ozone | Ozone concentration (μg/m3) | − |
Description | Interaction Relationship |
---|---|
Weaken, nonlinear | |
Weaken, univariate, nonlinear | |
Enhance, bivariate | |
Independent | |
Enhance, nonlinear |
Variables | Geographical Detector | Spatial Association Detector | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
A_RESTA | 0.334 *** | 0.000 | 0.418 *** | 0.000 |
A_STORE | 0.135 *** | 0.000 | 0.388 *** | 0.000 |
A_HOSPI | 0.112 *** | 0.000 | 0.275 *** | 0.000 |
A_CLINIC | 0.121 *** | 0.000 | 0.326 *** | 0.000 |
A_SCHOOL | 0.298 *** | 0.000 | 0.369 *** | 0.000 |
A_KINDE | 0.084 | 0.179 | 0.388 *** | 0.000 |
A_BANK | 0.047 ** | 0.017 | 0.382 *** | 0.000 |
A_ATM | 0.114 *** | 0.000 | 0.412 *** | 0.000 |
D_METRO | 0.402 *** | 0.000 | 0.457 *** | 0.000 |
D_BUS | 0.128 *** | 0.000 | 0.297 *** | 0.000 |
FLOOR | 0.064 * | 0.085 | 0.340 *** | 0.003 |
D_WATER | 0.055 ** | 0.033 | 0.250 *** | 0.000 |
D_PARK | 0.131 *** | 0.000 | 0.161 *** | 0.000 |
D_INDUS | 0.082 *** | 0.000 | 0.469 *** | 0.000 |
PM2.5 | 0.016 | 0.246 | 0.333 *** | 0.000 |
Ozone | 0.195 *** | 0.000 | 0.365 *** | 0.000 |
A_RESTA | A_STORE | A_HOSPI | A_CLINIC | A_SCHOOL | A_KINDE | A_BANK | A_ATM | D_METRO | D_BUS | FLOOR | D_WATER | D_PARK | D_INDUS | PM2.5 | Ozone | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A_RESTA | ||||||||||||||||
A_STORE | Y | |||||||||||||||
A_HOSPI | Y | |||||||||||||||
A_CLINIC | Y | |||||||||||||||
A_SCHOOL | Y | Y | Y | |||||||||||||
A_KINDE | Y | Y | ||||||||||||||
A_BANK | Y | Y | ||||||||||||||
A_ATM | Y | Y | ||||||||||||||
D_METRO | Y | Y | Y | Y | Y | Y | Y | |||||||||
D_BUS | Y | Y | Y | |||||||||||||
FLOOR | Y | Y | Y | |||||||||||||
D_WATER | Y | Y | Y | |||||||||||||
D_PARK | Y | Y | Y | |||||||||||||
D_INDUS | Y | Y | Y | |||||||||||||
PM2.5 | Y | Y | Y | Y | Y | |||||||||||
Ozone | Y | Y | Y | Y | Y | Y | Y | Y | Y |
A_RESTA | A_STORE | A_HOSPI | A_CLINIC | A_SCHOOL | A_KINDE | A_BANK | A_ATM | D_METRO | D_BUS | FLOOR | D_WATER | D_PARK | D_INDUS | PM2.5 | Ozone | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A_RESTA | ||||||||||||||||
A_STORE | 0.395 | |||||||||||||||
A_HOSPI | 0.366 | 0.213 | ||||||||||||||
A_CLINIC | 0.449 | 0.231 | 0.244 | |||||||||||||
A_SCHOOL | 0.371 | 0.377 | 0.330 | 0.413 | ||||||||||||
A_KINDE | 0.462 | 0.220 | 0.212 | 0.203 | 0.408 | |||||||||||
A_BANK | 0.443 | 0.189 | 0.166 | 0.175 | 0.398 | 0.199 | ||||||||||
A_ATM | 0.343 | 0.206 | 0.187 | 0.207 | 0.333 | 0.249 | 0.190 | |||||||||
D_METRO | 0.486 | 0.493 | 0.469 | 0.504 | 0.468 | 0.531 | 0.484 | 0.501 | ||||||||
D_BUS | 0.359 | 0.237 | 0.204 | 0.280 | 0.333 | 0.224 | 0.229 | 0.253 | 0.435 | |||||||
FLOOR | 0.404 | 0.265 | 0.232 | 0.253 | 0.377 | 0.220 | 0.209 | 0.241 | 0.474 | 0.200 | ||||||
D_WATER | 0.374 | 0.221 | 0.195 | 0.204 | 0.337 | 0.172 | 0.105 | 0.180 | 0.450 | 0.167 | 0.133 | |||||
D_PARK | 0.357 | 0.226 | 0.186 | 0.255 | 0.331 | 0.242 | 0.218 | 0.230 | 0.432 | 0.200 | 0.210 | 0.193 | ||||
D_INDUS | 0.445 | 0.257 | 0.261 | 0.229 | 0.430 | 0.209 | 0.176 | 0.195 | 0.478 | 0.287 | 0.188 | 0.138 | 0.233 | |||
PM2.5 | 0.400 | 0.214 | 0.212 | 0.199 | 0.379 | 0.123 | 0.126 | 0.140 | 0.458 | 0.174 | 0.155 | 0.079 | 0.157 | 0.128 | ||
Ozone | 0.478 | 0.429 | 0.286 | 0.313 | 0.465 | 0.330 | 0.264 | 0.312 | 0.560 | 0.294 | 0.309 | 0.251 | 0.297 | 0.302 | 0.296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Yung, E.H.K.; Chan, E.H.W.; Zhang, S.; Wang, S.; Chen, Y. The Spatial Effect of Accessibility to Public Service Facilities on Housing Prices: Highlighting the Housing Equity. ISPRS Int. J. Geo-Inf. 2023, 12, 228. https://doi.org/10.3390/ijgi12060228
Yu P, Yung EHK, Chan EHW, Zhang S, Wang S, Chen Y. The Spatial Effect of Accessibility to Public Service Facilities on Housing Prices: Highlighting the Housing Equity. ISPRS International Journal of Geo-Information. 2023; 12(6):228. https://doi.org/10.3390/ijgi12060228
Chicago/Turabian StyleYu, Peiheng, Esther H. K. Yung, Edwin H. W. Chan, Shujin Zhang, Siqiang Wang, and Yiyun Chen. 2023. "The Spatial Effect of Accessibility to Public Service Facilities on Housing Prices: Highlighting the Housing Equity" ISPRS International Journal of Geo-Information 12, no. 6: 228. https://doi.org/10.3390/ijgi12060228
APA StyleYu, P., Yung, E. H. K., Chan, E. H. W., Zhang, S., Wang, S., & Chen, Y. (2023). The Spatial Effect of Accessibility to Public Service Facilities on Housing Prices: Highlighting the Housing Equity. ISPRS International Journal of Geo-Information, 12(6), 228. https://doi.org/10.3390/ijgi12060228