Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model
Abstract
:1. Introduction
- We developed a storm surge hazard event ontology model and a spatio-temporal framework that unifies multiple spatial and temporal scales to create an information model that integrates storm surge hazard event information from multiple sources in multiple formats and on multiple spatial and temporal scales.
- Based on the constructed multi-source hazard event information model, we design methods for constructing a knowledge graph to formalize disaster knowledge from multi-source heterogeneous hazard event information.
- Finally, we used basic geographic data, multitemporal water depth simulation data (provided by Wang et al., 2022 [25]), and microblog text data to construct a knowledge graph for the 2018 typhoon Mangkhut storm surge event in Shenzhen, revealing the spatial and temporal distribution of the different categories of hazard-bearing bodies affected by the storm surge hazard and providing the retrieval of all affected hazard-bearing bodies within a given spatial or temporal range.
2. Related Work
2.1. Hazard Event Information Modeling
2.2. Formal Methods for Hazard Event Information
3. Materials and Methods
3.1. Modeling of Multi-Source Heterogeneous Hazard Event Information
3.1.1. Hazard Event Ontology
3.1.2. Spatio-Temporal Framework Based on Spatio-Temporal Coding
MTSIC
GeoSOT Spatial Coding
Computing Temporal and Spatial Relationships
Algorithm 1 Temporal relations calculation |
Input: Time periods P1 and P2 Output: Relationship between P1 and P2
|
Algorithm 2 Spatial relationship calculation |
Input: Spatial information SP1 and SP2 Output: Spatial relationship between SP1 and SP2
|
3.2. Representation of Multi-Source Heterogeneous Hazard Event Information Based on a Knowledge Graph
3.2.1. Knowledge Extractions for Various Data
Graphical Data
Textual Data
Algorithm 3 Knowledge extraction for vector line or face geometry |
Input: Vector line or face geometry Output: Set of spatial codes that form the vector: Spatial_codes_group
|
Algorithm 4 Knowledge extraction for raster data |
Input: Vector surface data of the study area, Raster data Output: Set of spatial grid codes, Attribute values of spatial grids
|
Algorithm 5 Knowledge extraction for dynamic simulation data |
|
3.2.2. Knowledge Reasoning Based on Temporal and Spatial Relations
4. Case Study
4.1. Study Area and Data
4.2. Data Processing
4.3. Generated Disaster Nodes
4.4. Validation of the Accuracy in Disaster Nodes Generation Process
4.5. Queries on the Knowledge Graph of Storm Surge Hazard Events
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Wang, T.; Leung, R.; Hibbard, K.; Janetos, T.; Kraucunas, I.; Rice, J.; Preston, B.; Wilbanks, T. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico. Nat. Hazards 2014, 71, 1771–1794. [Google Scholar] [CrossRef]
- Lagmay, A.M.F.; Agaton, R.P.; Bahala, M.A.C.; Briones, J.B.L.T.; Cabacaba, K.M.C.; Caro, C.V.C.; Dasallas, L.L.; Gonzalo, L.A.L.; Ladiero, C.N.; Lapidez, J.P.; et al. Devastating storm surges of Typhoon Haiyan. Int. J. Disaster Risk Reduct. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Du, X.; Liu, Q.; Liu, X. Temporal-spatial characteristics of storm surges and rough seas in coastal areas of Mainland China from 2000 to 2019. Nat. Hazards 2021, 107, 1273–1285. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, L.; Min, G. Effective IoT-facilitated storm surge flood modeling based on deep reinforcement learning. IEEE Internet Things J. 2020, 7, 6338–6347. [Google Scholar] [CrossRef]
- Liu, Q.; Ruan, C.; Zhong, S.; Li, J.; Yin, Z.; Lian, X. Risk assessment of storm surge disaster based on numerical models and remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 20–30. [Google Scholar] [CrossRef]
- Brower, A.E.; Ramesh, B.; Islam, K.A.; Mortveit, H.S.; Hoops, S.; Vullikanti, A.; Marathe, M.V.; Zaitchik, B.; Gohlke, J.M.; Swarup, S. Augmenting the Social Vulnerability Index using an agent-based simulation of Hurricane Harvey. Comput. Environ. Urban Syst. 2023, 105, 102020. [Google Scholar] [CrossRef]
- Wang, W.; Stewart, K. Spatiotemporal and semantic information extraction from Web news reports about natural hazards. Comput. Environ. Urban Syst. 2015, 50, 30–40. [Google Scholar] [CrossRef]
- Huang, Q.; Cervone, G.; Zhang, G. A cloud-enabled automatic disaster analysis system of multi-sourced data streams: An example synthesizing social media, remote sensing and Wikipedia data. Comput. Environ. Urban Syst. 2017, 66, 23–37. [Google Scholar] [CrossRef]
- Songchon, C.; Wright, G.; Beevers, L. Quality assessment of crowdsourced social media data for urban flood management. Comput. Environ. Urban Syst. 2021, 90, 101690. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Y.; Du, W.; Li, Y.; Chen, M.; Zheng, X. KE-CNN: A new social sensing method for extracting geographical attributes from text semantic features and its application in Wuhan, China. Comput. Environ. Urban Syst. 2021, 88, 101629. [Google Scholar] [CrossRef]
- Asghar, S.; Alahakoon, D.; Churilov, L. A comprehensive conceptual model for disaster management. J. Humanit. Assist. 2006, 1360, 1–15. [Google Scholar]
- Gaur, M.; Shekarpour, S.; Gyrard, A.; Sheth, A. empathi: An ontology for emergency managing and planning about hazard crisis. In Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 30 January–1 February 2019; pp. 396–403. [Google Scholar]
- OASIS. Common Alerting Protocol Version 1.2. Available online: http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.pdf (accessed on 30 September 2020).
- OASIS. Emergency Data Exchange Language (EDXL) Common Alerting Protocol (CAP) v1.2 Australia (AU) Profile Version 1.0. Available online: http://docs.oasis-open.org/emergency/edxl-cap1.2-au/v1.0/cs01/edxl-cap1.2-au-v1.0-cs01.pdf (accessed on 30 September 2020).
- Huang, F.; Yan, L. Reasoning of ontology model for typhoon disasters domain based on Jena. J. Comput. Appl. 2013, 33, 771. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Y.; Liu, Z.; Chen, D. Applying ontology learning and multi-objective ant colony optimization method for focused crawling to meteorological disasters domain knowledge. Expert Syst. Appl. 2022, 198, 116741. [Google Scholar] [CrossRef]
- Han, M.; Lee, J. Bayesian typhoon track prediction using wind vector data. Commun. Stat. Appl. Methods 2015, 22, 241–253. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, Z. A statistical dynamics track model of tropical cyclones for assessing typhoon wind hazard in the coast of southeast China. J. Wind Eng. Ind. Aerodyn. 2018, 172, 325–340. [Google Scholar] [CrossRef]
- Zhong, S.; Fang, Z.; Zhu, M.; Huang, Q. A geo-ontology-based approach to decision-making in emergency management of meteorological disasters. Nat. Hazards 2017, 89, 531–554. [Google Scholar] [CrossRef]
- Hu, D.; Wang, M.; Gao, F.; Xu, F.; Gu, J. Knowledge Representation and Reasoning for Complex Time Expression in Clinical Text. Data Intell. 2022, 4, 573–598. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, X.; Huai, A.; Tang, W. Information detection for the process of typhoon events in microblog text: A spatio-temporal perspective. ISPRS Int. J. Geo-Inf. 2021, 10, 174. [Google Scholar] [CrossRef]
- Huang, Z. Research on the Construction Method of Knowledge Graph for the Typhoon Disaster Events. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2021. [Google Scholar]
- Tong, X.; Cheng, C.; Wang, R.; Ding, L.; Zhang, Y.; Lai, G.; Wang, L.; Chen, B. An efficient integer coding index algorithm for multi-scale time information management. Data Knowl. Eng. 2019, 119, 123–138. [Google Scholar] [CrossRef]
- Jin, A.; Cheng, C. Spatial Data Coding Method Based on Global Subdivision Grid. J. Geomat. Sci. Technol. 2013, 30, 284–287. [Google Scholar]
- Wang, Y.; Chen, X.; Wang, L. Differential Semi-Quantitative Urban Risk Assessment of Storm Surge Inundation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, X-3/W1-2022, 177–185. [Google Scholar] [CrossRef]
- OGC. Time Ontology in OWL. 2006. Available online: https://www.w3.org/TR/owl-time/ (accessed on 20 April 2023).
- Ye, P.; Zhang, X.; Shi, G.; Chen, S.; Huang, Z.; Tang, W. TKRM: A formal knowledge representation method for typhoon events. Sustainability 2020, 12, 2030. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Mu, L.; Huang, L. Knowledge discovery from remote sensing images: A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1371. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Wu, S.; Gu, Z.; Tian, Y. Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications. Comput. Environ. Urban Syst. 2022, 98, 101884. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Dang, Y.; Ye, P. Knowledge Graph Representation of Typhoon Disaster Events Based on Spatiotemporal Processes. J. Geo-Inf. Sci. 2022, 25, 1228–1239. [Google Scholar]
- Sun, S.; Wang, L.; Ranjan, R.; Wu, A. Semantic analysis and retrieval of spatial data based on the uncertain ontology model in digital earth. Int. J. Digit. Earth 2015, 8, 3–16. [Google Scholar] [CrossRef]
- Sun, S.; Song, W.; Zomaya, A.Y.; Xiang, Y.; Choo, K.K.R.; Shah, T.; Wang, L. Associative retrieval in spatial big data based on spreading activation with semantic ontology. Future Gener. Comput. Syst. 2017, 76, 499–509. [Google Scholar] [CrossRef]
- Qu, T.; Wang, L.; Yu, J.; Yan, J.; Xu, G.; Li, M.; Cheng, C.; Hou, K.; Chen, B. STGI: A spatio-temporal grid index model for marine big data. Big Earth Data 2020, 4, 435–450. [Google Scholar] [CrossRef]
- Lagoze, C.; Hunter, J. The ABC ontology and model. J. Digit. Inf. 2001, 2, 1–18. [Google Scholar]
- Clementini, E.; Di Felice, P.; Van Oosterom, P. A small set of formal topological relationships suitable for end-user interaction. In Proceedings of the International Symposium on Spatial Databases, Singapore, 23–25 June 1993; Springer: Berlin/Heidelberg, Germany, 1993; pp. 277–295. [Google Scholar]
- Lei, X.; Song, W.; Fan, R.; Feng, R.; Wang, L. Semi-supervised geological disasters named entity recognition using few labeled data. GeoInformatica 2023, 27, 263–288. [Google Scholar] [CrossRef]
- WorldPop. Unconstrained Individual Countries 2000–2020 UN Adjusted (100 m Resolution). 2020. Available online: https://hub.worldpop.org/geodata/summary?id=24924 (accessed on 20 August 2023).
- Qian, C.; Yi, C.; Cheng, C.; Pu, G.; Liu, J. A coarse-to-fine model for geolocating Chinese addresses. ISPRS Int. J. Geo-Inf. 2020, 9, 698. [Google Scholar] [CrossRef]
Data Type | Data Source | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Population spatial distribution raster data | WorldPop [37] | 100 m | - |
Building spatial distribution vector surface data | OpenStreetMap (https://www.openstreetmap.org/, accessed on 20 August 2023) | - | - |
Road spatial distribution vector line data | OpenStreetMap (https://www.openstreetmap.org/, accessed on 20 August 2023) | - | - |
Subway Entry spatial distribution vector point data | Baidu Map (https://map.baidu.com/, accessed on 20 August 2023) | - | - |
Multi-temporal inundation depth simulation data | Provided by [25] | 500 m in Shenzhen area | 1 h |
Node Category | Number of Nodes | Node Attributes |
---|---|---|
Subway_Entry | 80 | GeoSOT_string, name |
Road | 2690 | GeoSOT_string_group, name, Isbrige, Ischannel |
Building | 17,793 | GeoSOT_string_group, name |
Population_grid | 144,842 | GeoSOT_string, Population_count |
flood_grid | 2,178,845 | GeoSOT_string, Time_code_int, Flooded_depth, Flooded_level |
Node Category | Number of Nodes |
---|---|
Road_flooded | 114,302 |
People_trapped | 373,476 |
Building_flooded | 247,474 |
Subway_entry_flooded | 2592 |
Spatial Range | The Number of Hazard- Affected Roads | The Number of Hazard- Affected Buildings | Time (Ours) | Time (QGIS) |
---|---|---|---|---|
(‘G001130221-12’, ) | 272 | 607 | 30.74 s | 129.13 s |
(‘G001130221-30’, ) | 143 | 339 | 20.34 s | 129.05 s |
(‘G001130230-21’, ) | 4 | 0 | 4.475 s | 128.92 s |
Temporal Range | The Number of Disaster-Affected Roads | The Number of Disaster-Affected Buildings | Time |
---|---|---|---|
16 September 2018 | 4399 | 12,427 | 1.77 s |
16 September 2018 8:00 a.m.–12:00 p.m. | 798 | 2451 | 0.38 s |
16 September 2018 from 19:00 to 20:20 | 270 | 611 | 0.12 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Wang, Y.; Han, W.; Song, W. Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model. ISPRS Int. J. Geo-Inf. 2024, 13, 88. https://doi.org/10.3390/ijgi13030088
Lei X, Wang Y, Han W, Song W. Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model. ISPRS International Journal of Geo-Information. 2024; 13(3):88. https://doi.org/10.3390/ijgi13030088
Chicago/Turabian StyleLei, Xinya, Yuewei Wang, Wei Han, and Weijing Song. 2024. "Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model" ISPRS International Journal of Geo-Information 13, no. 3: 88. https://doi.org/10.3390/ijgi13030088
APA StyleLei, X., Wang, Y., Han, W., & Song, W. (2024). Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model. ISPRS International Journal of Geo-Information, 13(3), 88. https://doi.org/10.3390/ijgi13030088