Delineating Source and Sink Zones of Trip Journeys in the Road Network Space
Abstract
:1. Introduction
2. Related Works
2.1. Detecting Spatially Homogeneous Areas Based on OD Points
2.2. Detecting Spatial Interaction Areas Based on OD Pairs
2.3. Critical Analysis of Existing Studies
3. Methodology
3.1. Topic Modeling of Segment-Based Trajectories
3.1.1. Segment-Based Representation of Trip Trajectories
3.1.2. Topic-Based Representation of Road Segments
3.2. Topic-Level Aggregation of Trip Routes
3.3. Spatially Constrained OD Clustering
3.3.1. OD Zone Characterization by Embedding Route Agglomerations
3.3.2. OD Zone Clustering Based on a Spatially Constrained Self-Organized Map (SOM) Network
3.3.3. Trajectory Topic Entropy in Traffic Zones
4. Experimental Results and Analyses
4.1. Real-Life Dataset Description
4.2. Spatiotemporal Analysis of the Results of the Proposed Method
4.2.1. Parameter-Setting Analysis
4.2.2. Spatio-Temporal Variation Patterns of Road Segment Topic
4.2.3. Analysis of the Dynamic Aggregation Situation of the Region and the Change in Trajectory Dynamic Characteristics
4.2.4. Spatial–Temporal Distribution Pattern Analysis of Local Topic Entropy
4.2.5. Experimental Comparisons and Evaluations
4.3. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1: Discovering Source and Sink Zones in Trip Routes | |
Input: Set of trajectories, Road segment sequences | |
Output: Source and Sink Zones | |
1 | Reconstruct trajectories using road segment sequences |
2 | FOR each trajectory in Set of Trajectories |
3 | Road Network Binding: Associating trajectory points with adjacent road segments based on (lon, lat, direction) |
4 | Reconstruct trip route based on road segment sequence |
5 | Apply LDA model to learn distinct topics in trip routes |
6 | Initialize an empty list, Trajectory Documents |
7 | FOR each trajectory in Set of Trajectories |
8 | Create a document representation of the trajectory |
9 | Document = Convert trajectory into a sequence of road segment identifiers |
10 | Add Document to Trajectory Documents |
11 | Preprocess Trajectory Documents |
12 | Tokenize each Document in Trajectory Documents |
13 | Remove rare and common tokens, if necessary |
14 | Create a dictionary of all unique tokens across Trajectory Documents |
15 | Convert Trajectory Documents into a Bag-of-Words (BoW) format |
16 | FOR each Document in Trajectory Documents |
17 | Convert Document into BoW using the dictionary |
18 | Store the result in Corpus |
19 | Train LDA model |
20 | Specify the number of topics, N |
21 | LDA_Model = Train LDA using Corpus, Dictionary, and N |
22 | Analyze the result |
23 | RETURN LDA_Model |
24 | Apply hierarchical clustering on topic-embedded trip routes |
25 | FOR each topic in Topics |
26 | Calculate Word Mover’s Distance (WRD) between trip routes |
27 | Clusters = Hierarchical Clustering(Topic-embedded trip routes, WRD) |
28 | Vectorize trajectory clusters for each basic spatial unit |
29 | Vectorize cluster |
30 | Detect source and sink zones through a spatially constrained GeoSOM network |
31 | GeoSOM_Input = Vectorized trajectory clusters |
32 | GeoSOM_Network = Train GeoSOM(GeoSOM_Input) |
33 | Source_Sink_Zones = Identify zones(GeoSOM_Network) |
34 | RETURN Source_Sink_Zones |
References
- Long, J.A.; Weibel, R.; Dodge, S.; Laube, P. Moving Ahead with Computational Movement Analysis. Int. J. Geogr. Inf. Sci. 2018, 32, 1275–1281. [Google Scholar] [CrossRef]
- Moreira-Matias, L.; Fernandes, R.; Gama, J.; Ferreira, M.; Mendes Moreira, J.; Damas, L. On Recommending Urban Hotspots to Find Our next Passenger. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013. [Google Scholar]
- Huang, W.; Cui, L.; Chen, M.; Zhang, D.; Yao, Y. EstiEstimating Urban Functional Distributions with Semantics Preserved POI Embedding. Int. J. Geogr. Inf. Sci. 2022, 36, 1905–1930. [Google Scholar] [CrossRef]
- Scholz, R.W.; Lu, Y. Detection of Dynamic Activity Patterns at a Collective Level from Large-Volume Trajectory Data. Int. J. Geogr. Inf. Sci. 2014, 28, 946–963. [Google Scholar] [CrossRef]
- Yuan, J.; Yu, Z.; Xing, X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 186–194. [Google Scholar]
- McKenzie, G.; Janowicz, K.; Gao, S.; Gong, L. How Where Is When? On the Regional Variability and Resolution of Geosocial Temporal Signatures for Points of Interest. Comput. Environ. Urban Syst. 2015, 54, 336–346. [Google Scholar] [CrossRef]
- Lee, J.; Inhye, S.; Gyung-Leen, P. Analysis of the Passenger Pick-Up Pattern for Taxi Location Recommendation. In Proceedings of the 2008 Fourth International Conference on Networked Computing and Advanced Information Management, Gyeongju, Republic of Korea, 2–4 September 2008; IEEE: Gyeongju, Republic of Korea, 2008; pp. 199–204. [Google Scholar]
- Yue, Y.; Zhuang, Y.; Li, Q.; Mao, Q. Mining Time-Dependent Attractive Areas and Movement Patterns from Taxi Trajectory Data. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009. [Google Scholar]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban Land Uses and Traffic ‘Source-Sink Areas’: Evidence from GPS-Enabled Taxi Data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Lu, S. Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots. Sustainability 2016, 8, 674. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, X.; Xu, Y.; Shaw, S.-L.; Yin, L. Spatiotemporal Model for Assessing the Stability of Urban Human Convergence and Divergence Patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2119–2141. [Google Scholar] [CrossRef]
- Liu, K.; Murayama, Y.; Ichinose, T. Exploring the Relationship between Functional Urban Polycentricity and the Regional Characteristics of Human Mobility: A Multi-View Analysis in the Tokyo Metropolitan Area. Cities 2021, 111, 103109. [Google Scholar] [CrossRef]
- Huang, J.; Tang, J. Discovery of arbitrarily shaped significant clusters in spatial point data with noise. Appl. Soft Comput. 2021, 108, 107452. [Google Scholar] [CrossRef]
- Zhao, P.; Qin, K.; Ye, X.; Wang, Y.; Chen, Y. A Trajectory Clustering Approach Based on Decision Graph and Data Field for Detecting Hotspots. Int. J. Geogr. Inf. Sci. 2016, 31, 1–27. [Google Scholar] [CrossRef]
- Deng, M.; Yang, X.; Shi, Y.; Gong, J.; Liu, Y.; Liu, H. A Density-Based Approach for Detecting Network-Constrained Clusters in Spatial Point Events. Int. J. Geogr. Inf. Sci. 2019, 33, 466–488. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Sun, Y.; Zhu, J.; Huang, Y.; Yang, S. A Constraint-Based Approach for Identifying the Urban–Rural Fringe of Polycentric Cities Using Multi-Sourced Data. Int. J. Geogr. Inf. Sci. 2022, 36, 114–136. [Google Scholar] [CrossRef]
- Shi, H.; Huang, H.; Ma, D.; Chen, L.; Zhao, M. Capturing Urban Recreational Hotspots from GPS Data: A New Framework in the Lens of Spatial Heterogeneity. Comput. Environ. Urban Syst. 2023, 103, 101972. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, Y.; Cao, N.; Zeng, H.; Ni, B.; Qu, H.; Ni, L.M. MobiSeg: Interactive region segmentation using heterogeneous mobility data. In Proceedings of the 2017 IEEE Pacific Visualization Symposium (PacificVis), Seoul, Republic of Korea, 18–21 April 2017; pp. 91–100. [Google Scholar]
- Chawla, S.; Yu, Z.; Hum, J. Inferring the Root Cause in Road Traffic Anomalies. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; IEEE: Brussels, Belgium, 2012; pp. 141–150. [Google Scholar]
- Zhu, X.; Guo, D. Mapping Large Spatial Flow Data with Hierarchical Clustering. Trans. GIS 2014, 18, 421–435. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, D.; Liu, X. Measuring Spatial Autocorrelation of Vectors. Geogr. Anal. 2015, 47, 300–319. [Google Scholar] [CrossRef]
- Tao, R.; Thill, J.C. BiFlowLISA: Measuring spatial association for bivariate flow data. Comput. Environ. Urban Syst. 2020, 83, 101519. [Google Scholar] [CrossRef]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing Spatial Distribution of Urban Land Use by Integrating Points-of-Interest and Google Word2Vec Model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting Urban Functional Regions from Points of Interest and Human Activities on Location-based Social Networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Song, C.; Pei, T.; Ma, T.; Du, Y.; Shu, H.; Guo, S.; Fan, Z. Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization. Int. J. Geogr. Inf. Sci. 2019, 33, 134–154. [Google Scholar] [CrossRef]
- Xing, X.; Yuan, Y.; Huang, Z.; Peng, X.; Zhao, P.; Liu, Y. Flow Trace: A Novel Representation of Intra-Urban Movement Dynamics. Comput. Environ. Urban Syst. 2022, 96, 101832. [Google Scholar] [CrossRef]
- Wang, J.; Lu, F.; Liu, S. A Classification-Based Multifractal Analysis Method for Identifying Urban Multifractal Structures Considering Geographic Mapping. Comput. Environ. Urban Syst. 2023, 101, 101952. [Google Scholar] [CrossRef]
- Zhang, T.; Duan, X.; Li, Y. Unveiling Transit Mobility Structure towards Sustainable Cities: An Integrated Graph Embedding Approach. Sustain. Cities Soc. 2021, 72, 103027. [Google Scholar] [CrossRef]
- Jia, T.; Yu, X.; Li, X.; Qin, K. Identification and Analysis of Urban Influential Regions Using Spatial Interaction Networks. Trans. GIS 2021, 25, 2821–2839. [Google Scholar] [CrossRef]
- Kang, C.; Jiang, Z.; Liu, Y. Measuring Hub Locations in Time-Evolving Spatial Interaction Networks Based on Explicit Spatiotemporal Coupling and Group Centrality. Int. J. Geogr. Inf. Sci. 2022, 36, 360–381. [Google Scholar] [CrossRef]
- Sobolevsky, S.; Szell, M.; Campari, R.; Couronné, T.; Smoreda, Z.; Ratti, C. Delineating Geographical Regions with Networks of Human Interactions in an Extensive Set of Countries. PLoS ONE 2013, 8, e81707. [Google Scholar] [CrossRef]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Cao, W.; Dong, L.; Cheng, Y.; Wu, L.; Guo, Q.; Liu, Y. Constructing Multi-Level Urban Clusters Based on Population Distributions and Interactions. Comput. Environ. Urban Syst. 2023, 99, 101897. [Google Scholar] [CrossRef]
- McKenzie, G.; Daniel, R. Measuring Urban Regional Similarity through Mobility Signatures. Comput. Environ. Urban Syst. 2021, 89, 101684. [Google Scholar] [CrossRef]
- Zhou, M.; Yue, Y.; Li, Q.; Wang, D. Portraying Temporal Dynamics of Urban Spatial Divisions with Mobile Phone Positioning Data: A Complex Network Approach. ISPRS Int. J. Geo-Inf. 2016; 5, 240. [Google Scholar]
- Blei, D.M.; Andrew, Y.N.; Michael, I.J. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Rubner, Y. The Earth Mover’s Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 2000, 40, 99–121. [Google Scholar] [CrossRef]
- Cao, J.; Xia, T.; Li, J.; Zhang, Y.; Tang, S. A Density-Based Method for Adaptive LDA Model Selection. Neurocomputing 2009, 72, 1775–1781. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the Self-Organizing Map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Mimno, D.; Wallach, H.; Talley, E.; Leenders, M.; McCallum, A. Optimizing semantic coherence in topic models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 262–272. [Google Scholar]
- Dunn, J.C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 1974, 4, 95–104. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Davies David, L.; Donald, W. Bouldin. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979; PAMI-1, 224–227. [Google Scholar]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On Clustering Validation Techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Sydney, Australia, 13 December 2010; pp. 911–916. [Google Scholar]
Dates | Time Period | Number of Topics | Date | Time Period | Number of Topics |
---|---|---|---|---|---|
31 May | Morning peak | 26 | 1 June | Morning peak | 20 |
Evening peak | 18 | Evening peak | 19 | ||
2 June | Morning peak | 75 | 3 June | Morning peak | 12 |
Evening peak | 14 | Evening peak | 16 | ||
4 June | Morning peak | 69 | 5 June | Morning peak | 45 |
Evening peak | 15 | Evening peak | 15 | ||
6 June | Morning peak | 24 | 7 June | Morning peak | 15 |
Evening peak | 16 | Evening peak | 9 |
Date | Time | Sd | Date | Time | Sd | Date | Time | Sd |
---|---|---|---|---|---|---|---|---|
31 May | 8:00–9:00 | 2.60 | 1 June | 8:00–9:00 | 2.70 | 2 June | 8:00–9:00 | 2.70 |
13:00–14:00 | 2.80 | 13:00–14:00 | 2.50 | 13:00–14:00 | 2.55 | |||
18:00–19:00 | 2.40 | 18:00–19:00 | 2.55 | 18:00–19:00 | 2.45 | |||
3 June | 8:00–9:00 | 2.60 | 4 June | 8:00–9:00 | 2.40 | 5 June | 8:00–9:00 | 2.75 |
13:00–14:00 | 2.65 | 13:00–14:00 | 2.60 | 13:00–14:00 | 2.70 | |||
18:00–19:00 | 2.50 | 18:00–19:00 | 2.35 | 18:00–19:00 | 2.55 | |||
6 June | 8:00–9:00 | 2.75 | 7 June | 8:00–9:00 | 2.25 | 8 June | 8:00–9:00 | 2.70 |
13:00–14:00 | 2.90 | 13:00–14:00 | 2.55 | 13:00–14:00 | 2.50 | |||
18:00–19:00 | 2.60 | 18:00–19:00 | 2.90 | 18:00–19:00 | 2.55 |
Date | Time Period | Method | Quantitative Evaluation Indexes | ||||
---|---|---|---|---|---|---|---|
Dunn | Sil | DB | SD | S_Dbw | |||
Weekend (1 June) | Morning | Liu’s | 0.016 | 0.490 | 0.653 | 0.326 | 1.101 |
Zhu’s | 0.734 | 0.743 | 0.687 | 0.196 | 0.456 | ||
Fang’s | 0.580 | 0.825 | 0.340 | 0.075 | 0.159 | ||
Jia’s | 0.741 | 0.803 | 0.622 | 0.145 | 1.389 | ||
Proposed | 0.880 | 0.954 | 0.257 | 0.045 | 0.108 | ||
Evening | Liu’s | 0.592 | 0.754 | 0.963 | 1.002 | 2.269 | |
Zhu’s | 0.847 | 0.636 | 0.829 | 0.628 | 0.662 | ||
Fang’s | 0.438 | 0.817 | 0.446 | 0.251 | 0.195 | ||
Jia’s | 0.122 | 0.596 | 0.759 | 0.432 | 8.207 | ||
Proposed | 1.578 | 0.919 | 0.423 | 0.202 | 0.179 | ||
Workday (4 June) | Morning | Liu’s | 0.645 | 0.815 | 0.836 | 0.413 | 0.804 |
Zhu’s | 0.537 | 0.734 | 0.764 | 0.723 | 2.478 | ||
Fang’s | 0.802 | 0.657 | 0.805 | 0.564 | 6.574 | ||
Jia’s | 0.315 | 0.810 | 0.973 | 0.654 | 1.978 | ||
Proposed | 1.286 | 0.927 | 0.631 | 0.275 | 0.167 | ||
Evening | Liu’s | 0.582 | 0.815 | 0.934 | 0.497 | 2.547 | |
Zhu’s | 0.704 | 0.938 | 0.749 | 0.305 | 0.957 | ||
Fang’s | 0.679 | 0.804 | 0.631 | 0.482 | 1.367 | ||
Jia’s | 0.457 | 0.733 | 0.834 | 0.592 | 4.578 | ||
Proposed | 0.834 | 1.174 | 0.627 | 0.257 | 0.844 | ||
Holiday (7 June) | Morning | Liu’s | 0.572 | 0.658 | 0.869 | 0.361 | 0.705 |
Zhu’s | 0.540 | 0.803 | 0.939 | 0.738 | 3.379 | ||
Fang’s | 0.791 | 0.584 | 0.756 | 0.431 | 8.317 | ||
Jia’s | 0.232 | 0.781 | 0.932 | 0.542 | 1.289 | ||
Proposed | 1.688 | 1.029 | 0.533 | 0.312 | 0.059 | ||
Evening | Liu’s | 0.527 | 0.933 | 0.899 | 0.341 | 0.369 | |
Zhu’s | 0.642 | 1.041 | 0.738 | 0.291 | 0.424 | ||
Fang’s | 0.595 | 0.959 | 0.338 | 0.324 | 0.375 | ||
Jia’s | 0.306 | 0.785 | 0.943 | 0.616 | 8.391 | ||
Proposed | 0.924 | 1.246 | 0.547 | 0.273 | 0.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Chen, B.; Huang, J.; Wang, D.; Liu, H.; Deng, M. Delineating Source and Sink Zones of Trip Journeys in the Road Network Space. ISPRS Int. J. Geo-Inf. 2024, 13, 150. https://doi.org/10.3390/ijgi13050150
Shi Y, Chen B, Huang J, Wang D, Liu H, Deng M. Delineating Source and Sink Zones of Trip Journeys in the Road Network Space. ISPRS International Journal of Geo-Information. 2024; 13(5):150. https://doi.org/10.3390/ijgi13050150
Chicago/Turabian StyleShi, Yan, Bingrong Chen, Jincai Huang, Da Wang, Huimin Liu, and Min Deng. 2024. "Delineating Source and Sink Zones of Trip Journeys in the Road Network Space" ISPRS International Journal of Geo-Information 13, no. 5: 150. https://doi.org/10.3390/ijgi13050150
APA StyleShi, Y., Chen, B., Huang, J., Wang, D., Liu, H., & Deng, M. (2024). Delineating Source and Sink Zones of Trip Journeys in the Road Network Space. ISPRS International Journal of Geo-Information, 13(5), 150. https://doi.org/10.3390/ijgi13050150